scholarly journals A New Approach To Solve Multi-objective Linear Bilevel Programming Problems

2010 ◽  
Vol 01 (04) ◽  
pp. 313-320 ◽  
Author(s):  
M. H. Farahi ◽  
E. Ansari
2010 ◽  
Vol 18 (3) ◽  
pp. 403-449 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Ankur Sinha

Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hecheng Li ◽  
Lei Fang

Interval bilevel programming problem is hard to solve due to its hierarchical structure as well as the uncertainty of coefficients. This paper is focused on a class of interval linear bilevel programming problems, and an evolutionary algorithm based on duality bases is proposed. Firstly, the objective coefficients of the lower level and the right-hand-side vector are uniformly encoded as individuals, and the relative intervals are taken as the search space. Secondly, for each encoded individual, based on the duality theorem, the original problem is transformed into a single level program simply involving one nonlinear equality constraint. Further, by enumerating duality bases, this nonlinear equality is deleted, and the single level program is converted into several linear programs. Finally, each individual can be evaluated by solving these linear programs. The computational results of 7 examples show that the algorithm is feasible and robust.


1996 ◽  
Vol 8 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Khosrow Moshirvaziri ◽  
Mahyar A. Amouzegar ◽  
Stephen E. Jacobsen

Sign in / Sign up

Export Citation Format

Share Document