scholarly journals Application Of Differential Transform Method For El Nino Southern Oscillation (enso) Model With Compared Adomian Decomposition And Variational Iteration Methods

2015 ◽  
Vol 15 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Murat Gubes ◽  
H. Alpaslan Peker ◽  
Galip Oturanc
2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1663-1669
Author(s):  
Yong-Ju Yang

In this article, a new method, which is coupled by the variational iteration and reduced differential transform method, is proposed to solve local fractional differential equations. The advantage of the method is that the integral operation of variational iteration is transformed into the differential operation. One test examples is presented to demonstrate the reliability and efficiency of the proposed method.


Author(s):  
Mohammad Reza Hajmohammadi ◽  
Seyed Salman Nourazar ◽  
Ali Habibi Manesh

A new algorithm is proposed based on semi-analytical methods to solve the conjugate heat transfer problems. In this respect, a problem of conjugate forced-convective flow over a heat-conducting plate is modeled and the integro-differential equation occurring in the problem is solved by two lately-proposed approaches, Adomian decomposition method and differential transform method. The solution of the governing integro-differential equation for temperature distribution of the plate is handled more easily and accurately by implementing Adomian decomposition method/differential transform method rather than other traditional methods such as perturbation method. A numerical approach is also performed via finite volume method to examine the validity of the results for temperature distribution of the plate obtained by Adomian decomposition method/differential transform method. It is shown that the expressions for the temperature distribution in the plate obtained from the two methods, Adomian decomposition method and differential transform method, are the same and show closer agreement to the results calculated from numerical work in comparison with the expression obtained by perturbation method existed in the literature.


2013 ◽  
Vol 284-287 ◽  
pp. 508-512
Author(s):  
Shih Hsiang Chang

This paper presents a numerical comparison between the differential transform method and the modified Adomian decomposition method for solving the boundary layer problems arising in hydrodynamics. The results show that the differential transform method and modified Adomian decomposition method are easier and more reliable to use in solving this type of problem and provides accurate data as compared with those obtained by other numerical methods.


Sign in / Sign up

Export Citation Format

Share Document