scholarly journals Model and algorithm for bilevel linear programming with fuzzy decision variables and multiple followers

2017 ◽  
Vol 10 (04) ◽  
pp. 2162-2170
Author(s):  
Shengyue Deng ◽  
Jintao Tan ◽  
Chengjie Xu ◽  
Xinfan Wang
Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 569
Author(s):  
Wu

The numerical method for solving the fuzzy linear programming problems with fuzzydecision variables is proposed in this paper. The difficulty for solving this kind of problem is thatthe decision variables are assumed to be nonnegative fuzzy numbers instead of nonnegative realnumbers. In other words, the decision variables are assumed to be membership functions. One of thepurposes of this paper is to derive the analytic formula of error estimation regarding the approximateoptimal solution. On the other hand, the existence of optimal solutions is also studied in this paper.Finally we present two numerical examples to demonstrate the usefulness of the numerical method.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2937
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Elnaz Osgooei ◽  
Gholamreza Haseli ◽  
Hana Tomaskova

Recently, new methods have been recommended to solve fully fuzzy linear programming (FFLP) issues. Likewise, the present study examines a new approach to solve FFLP issues through fuzzy decision parameters and variables using triangular fuzzy numbers. The strategy, which is based on alpha-cut theory and modified triangular fuzzy numbers, is suggested to obtain the optimal fully fuzzy solution for real-world problems. In this method, the problem is considered as a fully fuzzy problem and then is solved by applying the new definition presented for the triangular fuzzy number to optimize decision variables and the objective function. Several numerical examples are solved to illustrate the above method.


Author(s):  
Monalisha Pattnaik

This paper finds solutions to the fuzzy linear program where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi objective programming methods. Unfortunately all these methods have shortcomings. In this paper, using the concept of comparison of fuzzy numbers, the author introduces a very effective method for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the simplex based method. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a) version software, the four dimensional slice diagram is represented to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Aihong Ren

We address a fully fuzzy bilevel linear programming problem in which all the coefficients and variables of both objective functions and constraints are expressed as fuzzy numbers. This paper is to develop a new method to deal with the fully fuzzy bilevel linear programming problem by applying interval programming method. To this end, we first discretize membership grade of fuzzy coefficients and fuzzy decision variables of the problem into a finite number ofα-level sets. By usingα-level sets of fuzzy numbers, the fully fuzzy bilevel linear programming problem is transformed into an interval bilevel linear programming problem for eachα-level set. The main idea to solve the obtained interval bilevel linear programming problem is to convert the problem into two deterministic subproblems which correspond to the lower and upper bounds of the upper level objective function. Based on theKth-best algorithm, the two subproblems can be solved sequentially. Based on a series ofα-level sets, we introduce a linear piecewise trapezoidal fuzzy number to approximate the optimal value of the upper level objective function of the fully fuzzy bilevel linear programming problem. Finally, a numerical example is provided to demonstrate the feasibility of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shengyue Deng ◽  
Liqian Zhou ◽  
Xinfan Wang

The optimal solution of fuzzy bilevel linear programming with multiple followers (MFFBLP) model is shown to be equivalent to the optimal solution of the bilevel linear programming with multiple followers by using fuzzy structured element theory. The optimal solution to this model is found out by adopting the Kuhn-Tucker approach. Finally, an illustrative numerical example for this model is also provided to demonstrate the feasibility and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document