scholarly journals Numerical simulation of gravity current propagation in a compressible atmosphere

Author(s):  
M.V. Shokurov ◽  
N.Yu. Germankova ◽  
◽  
2015 ◽  
Author(s):  
Reuben Chiew ◽  
Nan Yi ◽  
Quan Wen ◽  
Chong Shen Ng ◽  
Shuang Jie Zhu ◽  
...  

2015 ◽  
Vol 778 ◽  
pp. 552-585 ◽  
Author(s):  
M. M. Nasr-Azadani ◽  
E. Meiburg

An analytical vorticity-based model is introduced for steady-state inviscid Boussinesq gravity currents in sheared ambients. The model enforces the conservation of mass and horizontal and vertical momentum, and it does not require any empirical closure assumptions. As a function of the given gravity current height, upstream ambient shear and upstream ambient layer thicknesses, the model predicts the current velocity as well as the downstream ambient layer thicknesses and velocities. In particular, it predicts the existence of gravity currents with a thickness greater than half the channel height, which is confirmed by direct numerical simulation (DNS) results and by an analysis of the energy loss in the flow. For high-Reynolds-number gravity currents exhibiting Kelvin–Helmholtz instabilities along the current/ambient interface, the DNS simulations suggest that for a given shear magnitude, the current height adjusts itself such as to allow for maximum energy dissipation.


2005 ◽  
Vol 49 ◽  
pp. 1399-1404 ◽  
Author(s):  
Jaswant SINGH ◽  
Juichiro AKIYAMA ◽  
Mirei SHIGE-EDA

2000 ◽  
Vol 418 ◽  
pp. 213-229 ◽  
Author(s):  
CARLOS HÄRTEL ◽  
FREDRIK CARLSSON ◽  
MATTIAS THUNBLOM

Results are presented from a linear-stability analysis of the flow at the head of two-dimensional gravity-current fronts. The analysis was undertaken in order to clarify the instability mechanism that leads to the formation of the complex lobe-and-cleft pattern which is commonly observed at the leading edge of gravity currents propagating along solid boundaries. The stability analysis concentrates on the foremost part of the front, and is based on direct numerical simulation data of two-dimensional lock-exchange flows which are described in the companion paper, Härtel et al. (2000). High-order compact finite differences are employed to discretize the stability equations which results in an algebraic eigenvalue problem for the amplification rate, that is solved in an iterative fashion. The analysis reveals the existence of a vigorous linear instability that acts in a localized way at the leading edge of the front and originates in an unstable stratification in the flow region between the nose and stagnation point. It is shown that the amplification rate of this instability as well as its spanwise length scale depend strongly on Reynolds number. For validation, three-dimensional direct numerical simulations of the early stages of the frontal instability are performed, and close agreement with the results from the linear-stability analysis is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document