scholarly journals Modern and fossil pollen record from region of the middle Araguaia River floodplain, Tocantins State (Brazil)

2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Lais Aguiar da Silveira MENDES ◽  
Maria Ecilene Nunes da Silva MENESES ◽  
Hermann BEHLING ◽  
Marcondes Lima da COSTA
2021 ◽  
Author(s):  
Akhtar-E Ekram ◽  
Rebecca Hamilton ◽  
Matthew Campbell ◽  
Chloe Plett ◽  
Sureyya Kose ◽  
...  

<p>Several studies have shown that ancient plant-derived DNA can be extracted and sequenced from lake sediments and complement the analysis of fossil pollen in reconstructing past vegetation responses to climate variability and anthropogenic perturbations. The majority of such studies have been performed on Holocene lakes located in cooler higher latitude regions whereas similar studies from tropical lakes are limited. Here, we report a ~1 Ma record of vegetation changes in tropical Lake Towuti (Sulawesi, Indonesia) through parallel pollen and sedimentary ancient DNA (sed aDNA) analysis. Lake Towuti is located in a vegetation biodiversity hotspot and in the centre of the Indo Pacific Warm Pool (IPWP), which comprises the world’s warmest oceanic waters and influences globally important climate systems. In the context of global change, the surface area of the IPWP is rapidly expanding. Lake Towuti is of particular interest since it provides a unique opportunity to obtain a long-term record of IPWP-controlled climate-ecosystem interactions and ecosystem resilience. Stratigraphic analysis of fossil pollen vs. sequencing of preserved chloroplast DNA (cpDNA) signatures (i.e., trnL-P6) both revealed that Lake Towuti experienced significant vegetation changes during the transition from a landscape initially characterized by active river channels, shallow lakes and swamps into a permanent lake ~1 Ma ago. Both proxies marked a predominance of trees or shrubs during most of Lake Towuti’s history, but the trnL-P6 barcoding approach revealed a much higher relative abundance of remote montane conifers, which likely have produced large amounts of chloroplast-rich airborne pollen that were subsequently buried in the sedimentary record. The pollen record showed a higher relative abundance of evergreen tropical forest vegetation, whereas the trnL-P6 record revealed a higher relative abundance of predominantly wetland herbs that must have entered the lake from the local catchment in the form of chloroplast-rich litter. Furthermore, the sedimentary record was rich in presumably wind-derived chloroplast-lacking fern spores, while fern trnL-P6 was only sporadically detected. Only through trnL-P6 barcoding, fern-derived biomass in the sedimentary record could be identified as Schizaeaceae, which is a primitive tropical grass-like fern family often associated with swampy or moist soils. Unlike pollen, trnL-P6 could identify grasses at clade and subfamily levels and confirmed that the majority of grasses in the area represented wet climate C3 grasses or those that can switch between C3 and C4 carbon fixation pathways, whereas grasses that can only perform C4 carbon fixation, indicative of dry climate conditions, were not detected. At least for sediments deposited prior to the Last Glacial Maximum, neither pollen nor trnL-P6 revealed significant vegetation changes between alternating layers of lacustrine green and red sideritic clays thought to have been deposited during orbitally controlled wetter vs. drier periods. These preliminary results suggest that vegetation in this tropical biodiversity hotspot may be relatively resilient to long-term variations in IPWP hydrology.</p>


2014 ◽  
Vol 41 (4) ◽  
pp. 673-686 ◽  
Author(s):  
Natácia Evangelista de Lima ◽  
Matheus S. Lima-Ribeiro ◽  
Carla Faleiro Tinoco ◽  
Levi Carina Terribile ◽  
Rosane G. Collevatti

2012 ◽  
Vol 25 (3) ◽  
pp. 171 ◽  
Author(s):  
Andrew H. Thornhill ◽  
Michael D. Crisp

Identifying synapomorphic morphological characters is needed to select and then accurately place fossils as calibrations on a phylogeny in molecular-dating analyses. The plant family Myrtaceae, with 130 genera and 5500 species, has nine different pollen types, whereas the fossil pollen record of Myrtaceae, represented by the genus Myrtaceidites, putatively extends back to the Cretaceous and also contains at least nine distinct morphospecies. To reveal potential links between extant and fossil pollen, we optimised pollen characters scored from a recent family-wide review of extant Myrtaceae pollen using scanning electron microscopy (SEM) onto a phylogeny of 111 taxa inferred from two chloroplast (matK and ndhF) and one nuclear (internal transcribed spacer, ITS) loci. Our findings indicate the potential use of colpus morphology in diagnosing pollen types in Myrtaceae, whereas the majority of character states of exine pattern, presence of apocolpial island and pollen width appear to be homoplasious. The results of the present study have implications for understanding the relationship between fossil morphospecies and extant Myrtaceae species, and their reliable choice in molecular dating.


Grana ◽  
2013 ◽  
Vol 52 (3) ◽  
pp. 161-180 ◽  
Author(s):  
Camila Martínez ◽  
Santiago Madriñán ◽  
Michael Zavada ◽  
Carlos Alberto Jaramillo
Keyword(s):  

The Holocene ◽  
2019 ◽  
Vol 29 (7) ◽  
pp. 1176-1188 ◽  
Author(s):  
Francisca Alba-Sánchez ◽  
José Antonio López-Sáez ◽  
Daniel Abel-Schaad ◽  
Silvia Sabariego Ruiz ◽  
Sebastián Pérez-Díaz ◽  
...  

Current knowledge of climate change effects on forest ecology and species conservation should be linked to understanding of the past-time. Abies pinsapo forests constitute a model of an endangered ecosystem, highly vulnerable to ongoing warming, whose populations have been declining for centuries, while the drivers of this local depletion trend remain poorly understood. We hypothesized that long-term disturbances, both human- and natural-induced, have shaped A. pinsapo forests, contributing to these decline processes. Until today, studies using fossil pollen record to identify past climate impacts and land-use changes on A. pinsapo populations have not been done. Here, we investigate forests’ dynamics since the late Holocene (1180 cal. AD to present) in Southern Iberian Peninsula from a fossil pollen record by comparing the results obtained with climate fluctuations and land-uses changes. The pollen sequence shows a phase of stability during the Islamic Period (~1180–1400 cal. AD; ‘Medieval Climate Anomaly’), followed by increasing degradation at Christian Period concurrent with ‘Little Ice Age’ (LIA) (ca. 1487–1530 cal. AD). The Modern Period (1530–1800 cal. AD; LIA) is linked to intensive forest management, related to the naval industry. Afterwards, a progressive reduction is recorded during the Contemporary Age period (‘Industrial Period’) until ‘Recent Warming’. In short, historical severe forest management coupled with increasing aridity since LIA appear to influence A. pinsapo forest current species composition and poor structural diversity. These disturbances might be limiting the resilience of A. pinsapo forests under a climate change scenario. A selected forest management could promote a more complex forest structure.


1982 ◽  
Vol 103 (3) ◽  
pp. 290-290
Author(s):  
Frank M. Chambers ◽  
Edward W. Cloutman
Keyword(s):  

1985 ◽  
Vol 23 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Margaret Bryan Davis ◽  
Daniel B. Botkin

Simulations of cool-temperate forest growth in response to climatic change using the JABOWA computer model show that a decrease of 600 growing degree-days (equivalent to a 2°C decrease in mean annual temperature) causes red spruce (Picea rubens) to replace sugar maple (Acer saccharum) as the dominant tree. These changes are delayed 100–200 yr after the climatic cooling, producing gradual forest changes in response to abrupt temperature changes, and reducing the amplitude of response to brief climatic events. Soils and disturbances affect the speed and magnitude of forest response. The delayed responses are caused by the difference in sensitivity of adult trees and younger stages. The length of the delay depends on the life history characteristics of the dominant species. Delayed responses imply that fossil pollen deposits, even if they faithfully record the abundances of trees in forests, may not be able to resolve climatic changes within 100–200 yr, or to record very brief climatic events. This explains why pollen deposits do not as yet show responses to climatic changes during the past 100 yr. Only the Little Ice Age, which lasted several centuries, caused sufficient forest change to be recorded in fossil pollen, and only at certain sites.


1994 ◽  
Vol 31 (2) ◽  
pp. 418-425 ◽  
Author(s):  
M. J. Hutton ◽  
G. M. MacDonald ◽  
R. J. Mott

A fossil pollen record extending from 11 300 BP to the present was recovered from Mariana Lake, Alberta (55°57′N, 112°01′W). Initially, the region had a sparse vegetation dominated by forbs and graminoids, which at approximately 10 500 BP succeeded to Picea glauca forest. Picea mariana – Sphagnum peatlands began to develop between 10 000 and 9500 BP. After 9000 BP Sphagnum-dominated sites decreased; P. glauca declined while Betula increased. From 7500 to 5500 BP Populus reached its maximum Holocene representation in the vegetation. Sphagnum-dominated peatlands almost disappeared. The changes following 9000 BP were likely caused by increased aridity. However, the presence of P. mariana, Abies, and Larix in the pollen record suggests that mesic sites remained. Beginning at 6500–6000 BP the extent of Sphagnum peatlands began to increase. Abies declined in importance following 5000 BP, possibly due to paludification of mesic sites. The expansion of parkland into central Alberta during the mid-Holocene did not extend to Mariana Lake. However, Mariana Lake records changes in vegetation resulting from increased aridity in the early to mid-Holocene which are not apparent at more northerly sites in Alberta.


Sign in / Sign up

Export Citation Format

Share Document