The impact of climate and land-use changes on the most southerly fir forests (Abies pinsapo) in Europe

The Holocene ◽  
2019 ◽  
Vol 29 (7) ◽  
pp. 1176-1188 ◽  
Author(s):  
Francisca Alba-Sánchez ◽  
José Antonio López-Sáez ◽  
Daniel Abel-Schaad ◽  
Silvia Sabariego Ruiz ◽  
Sebastián Pérez-Díaz ◽  
...  

Current knowledge of climate change effects on forest ecology and species conservation should be linked to understanding of the past-time. Abies pinsapo forests constitute a model of an endangered ecosystem, highly vulnerable to ongoing warming, whose populations have been declining for centuries, while the drivers of this local depletion trend remain poorly understood. We hypothesized that long-term disturbances, both human- and natural-induced, have shaped A. pinsapo forests, contributing to these decline processes. Until today, studies using fossil pollen record to identify past climate impacts and land-use changes on A. pinsapo populations have not been done. Here, we investigate forests’ dynamics since the late Holocene (1180 cal. AD to present) in Southern Iberian Peninsula from a fossil pollen record by comparing the results obtained with climate fluctuations and land-uses changes. The pollen sequence shows a phase of stability during the Islamic Period (~1180–1400 cal. AD; ‘Medieval Climate Anomaly’), followed by increasing degradation at Christian Period concurrent with ‘Little Ice Age’ (LIA) (ca. 1487–1530 cal. AD). The Modern Period (1530–1800 cal. AD; LIA) is linked to intensive forest management, related to the naval industry. Afterwards, a progressive reduction is recorded during the Contemporary Age period (‘Industrial Period’) until ‘Recent Warming’. In short, historical severe forest management coupled with increasing aridity since LIA appear to influence A. pinsapo forest current species composition and poor structural diversity. These disturbances might be limiting the resilience of A. pinsapo forests under a climate change scenario. A selected forest management could promote a more complex forest structure.

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


2008 ◽  
Vol 8 (4) ◽  
pp. 15131-15163 ◽  
Author(s):  
J. Avise ◽  
J. Chen ◽  
B. Lamb ◽  
C. Wiedinmyer ◽  
A. Guenther ◽  
...  

Abstract. The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC) A2 scenario are derived through the downscaling of Parallel Climate Model (PCM) output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4) global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS), and changes in land-use are projected using data from the Community Land Model (CLM) and the Spatially Explicit Regional Growth Model (SERGOM). For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv) on average daily maximum 8-h (DM8H) ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv). Changes in average 24-h (A24-h) PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3), while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2.5 concentrations by −0.9 μg m−3, but this reduction is more than tripled in the Southeastern US due to increased precipitation and wet deposition.


Author(s):  
J. S. Wu ◽  
Y. P. Li ◽  
J. Sun ◽  
P. P. Gao ◽  
G. H. Huang ◽  
...  

Abstract A multiple scenario-based ensemble prediction (MSEP) method is developed for exploring the impacts of climate and land-use changes on runoff in the Naryn River Basin. MSEP incorporates multiple global climate models, Cellular Automata–Markov and Soil and Water Assessment Tool (SWAT) within a general framework. MSEP can simultaneously analyze the effects of climate and land-use changes on runoff, as well as provide multiple climate and land-use scenarios to reflect the associated uncertainties in runoff simulation and prediction. Totally 96 scenarios are considered to analyze the trend and range of future runoff. Ensemble prediction results reveal that (i) climate change plays a leading role in runoff variation; (ii) compared to the baseline values, peak flow would increase 36.6% and low flow would reduce 36.8% by the 2080s, which would result in flooding and drought risks in the future and (iii) every additional hectare of arable land would increase the water deficit by an average of 10.9 × 103 m3, implying that the arable land should be carefully expanded in the future. Results suggest that, to mitigate the impact of climate change, the rational control of arable land and the active promotion of irrigation efficiency are beneficial for water resources management and ecological environmental recovery.


2020 ◽  
Author(s):  
Joris Eekhout ◽  
Carolina Boix-Fayos ◽  
Pedro Pérez-Cutillas ◽  
Joris de Vente

<p>The Mediterranean region has been identified as one of the most affected global hot-spots for climate change. Recent climate change in the Mediterranean can be characterized by faster increasing temperatures than the global mean and significant decreases in annual precipitation. Besides, important land cover changes have occurred, such as reforestation, agricultural intensification, urban expansion and the construction of many reservoirs, mainly with the purpose to store water for irrigation. Here we study the impacts of these changes on several ecosystem services in the Segura River catchment, a typical large Mediterranean catchment where many of the before mentioned changes have occurred in the last half century. We applied a hydrological model, coupled with a soil erosion and sediment transport model, to study the impact of climate and land cover change and reservoir construction on ecosystem services for the period 1971-2010. Eight ecosystem services indicators were defined, which include runoff, plant water stress, hillslope erosion, reservoir sediment yield, sediment concentration, reservoir storage, flood discharge and low flow. To assess larger land use changes, we also applied the model for an extended period (1952-2018) to the Taibilla subcatchment, a typical Mediterranean mountainous subcatchment, which plays an important role in the provision of water within the Segura River catchment. As main results we observed that climate change in the evaluated period is characterized by a decrease in precipitation and an increase in temperature. Detected land use change over the past 50 years is typical for many Mediterranean catchments. Natural vegetation in the headwaters increased due to agricultural land abandonment. Agriculture expanded in the central part of the catchment, which most likely is related to the construction of reservoirs in the same area. The downstream part of the catchment is characterized by urban expansion. While land use changed in more than 30% of the catchment, most impact on ecosystem services can be attributed to climate change and reservoir construction. All these changes have had positive and negative impacts on ecosystem services. The positive impacts include a decrease in hillslope erosion, sediment yield, sediment concentration and flood discharge (-21%, -18%, -82% and -41%, respectively). The negative impacts include an increase in plant water stress (+5%) and a decrease in reservoir storage (-5%). The decrease in low flow caused by land use change was counteracted by an increase in low flow due to reservoir construction. The results of our study highlight how relatively small climate and land use changes compared to the changes foreseen for the coming decades, have had an important impact on ecosystem services over the past 50 years.</p>


2021 ◽  
Vol 35 (3) ◽  
pp. 881-896
Author(s):  
Adam Krajewski ◽  
Anna E. Sikorska-Senoner ◽  
Leszek Hejduk ◽  
Kazimierz Banasik

AbstractThe aims of this study are: i) to better understand the coupled interactions between land use changes, climate change and the aquatic ecosystem in a small agricultural catchment (<100 km2) with a long observation history (1963–2018) and a known land use history, and ii) to test available approaches to separate land use and climate change impacts on water resources in such a small catchment. The pre- and post-change periods have been separated based on change points and the known land use history. Next, conceptual and analytical approaches were applied to quantify and to distinguish between the impacts of climate and land use changes on annual runoff for these two periods. Over the observation period, both land use changes (increase in forest areas) as well as climate change (a temperature rise and a decrease in annual precipitation) occurred. These changes contributed to a decrease in the average annual runoff by 51.9 mm (49% of the long-term average) during the observation period. The quantified contributions of climate and land use changes to the decrease in the mean annual runoff amount to between 60% and 80% and between 40% and 20%, respectively. (i) The results obtained from different methods were consistent - a change in runoff was primarily caused by shifts in climatic variables. (ii) However, the quantified contributions varied depending on the method applied and the form of the Budyko curve. (iii) Thus, special care should be taken in relation to the selection of the Budyko curve for quantifying these changes. (iv) Knowledge of the water deficit sources can result in better planning of water resources management in such small catchments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jahanbakhsh Balist ◽  
Bahram Malekmohammadi ◽  
Hamid Reza Jafari ◽  
Ahmad Nohegar ◽  
Davide Geneletti

AbstractThis study investigates how land use and climate changes affect water yield ecosystem service (ES) in the Sirvan River basin, located in Iran’s Kurdistan and Kermanshah provinces. By detecting land-use and climatic parameter changes in the past, their future evolution were modeled by scenario making. For this purpose, we developed two land-use scenarios (low and high urbanization) and two climatic scenarios (Representative Concentration Pathway 2.6 and RCP 8.5). The implemented scenarios showed how the amount of water yield in the basin and sub-basins changes in the future based on climate and land-use changes. The results showed that, concerning land use, the forest has decreased from 2013 to 2019, and built-up areas have increased. Also, the results showed that precipitation has been declining in the long term, and the temperature has been rising. Finally, the Water yield in 2019 was higher than in 2013 and lower in the future based on forecast scenarios. This trend will continue until 2040. In addition, it was found that the t effects of these factors on water yield ES are a complex process, and based on the results, the impact of climatic factors is more significant than the one of land-use change. We could conclude that this region will face more environmental problems in the future.


2019 ◽  
Vol 11 (17) ◽  
pp. 4654
Author(s):  
Marcela Prokopová ◽  
Luca Salvati ◽  
Gianluca Egidi ◽  
Ondřej Cudlín ◽  
Renata Včeláková ◽  
...  

Climate change plays an important role in shaping ecological stability of landscape systems. Increasing weather fluctuations such as droughts threaten the ecological stability of natural and anthropogenic landscapes. Uncertainty exists regarding the validity of traditional landscape assessment schemes under climate change. This commentary debates the main factors that threaten ecological stability, discussing basic approaches to interpret landscape functioning. To address this pivotal issue, the intimate linkage between ecological stability and landscape diversity is explored, considering different approaches to landscape stability assessment. The impact of land-use changes on landscape stability is finally discussed. Assessment methodologies and indicators are reviewed and grouped into homogeneous classes based on a specific nomenclature of stability aspects which include landscape composition, fragmentation and connectivity, thermodynamic and functional issues, biodiversity, soil degradation, and ecological disturbance. By considering land-use change as one of the most important factors underlying climate change, individual components of landscape stability are finally delineated and commented upon. In this regard, specific trajectories of land-use change (including agricultural intensification, land abandonment, and urbanization) are investigated for their effects on ecological stability. A better understanding of land-use impacts on landscape stability is crucial for a better knowledge of processes leading to land degradation.


2021 ◽  
Author(s):  
Hakan Gur

Climate and land-use changes are among the most important drivers of biodiversity loss and, moreover, their impacts on biodiversity are expected to increase further in the 21st century. In this study, the future impact of climate and land-use changes on Anatolian ground squirrels was assessed. Accordingly, a hierarchical approach with two steps was used. First, ecological niche modelling was used to assess the impact of climate change in areas accessible to Anatolian ground squirrels through dispersal (i.e. the impact of climate change). Second, based on the habitat preferences of ground squirrels, land-use data were used to assess the impact of land-use change in suitable bioclimatic areas for Anatolian ground squirrels under present and future conditions (i.e. the combined impact of both changes). Also, priority areas for the conservation of Anatolian ground squirrels were identified based on in-situ climate change refugia. This study represents a first attempt to combine niche modelling and land-use data for a species in Anatolia, one of the most vulnerable regions to the drivers of biodiversity loss, because it is the region where three of biodiversity hotspots meet, and interact. Habitat availability (i.e. suitable habitats across suitable bioclimatic areas) was projected to decline by 19-69% in the future (depending on the scenario), mainly due to the loss of suitable bioclimatic areas (47-77%, depending on the scenario) at lower elevations and in the western part of the central Anatolia and in the eastern Anatolia, suggesting that Anatolian ground squirrels will contract their range in the future, mainly due to climate change. Thus, in-situ climate change refugia were projected mainly in the eastern and southeastern parts of the central Anatolia, suggesting these regions as priority areas for the conservation of Anatolian ground squirrels.


2009 ◽  
Vol 9 (4) ◽  
pp. 1111-1124 ◽  
Author(s):  
J. Avise ◽  
J. Chen ◽  
B. Lamb ◽  
C. Wiedinmyer ◽  
A. Guenther ◽  
...  

Abstract. The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC) A2 scenario are derived through the downscaling of Parallel Climate Model (PCM) output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4) global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS), and changes in land-use are projected using data from the Community Land Model (CLM) and the Spatially Explicit Regional Growth Model (SERGOM). For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv) on average daily maximum 8-h (DM8H) ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv). Changes in average 24-h (A24-h) PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3), while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2.5 concentrations by −0.9 μg m−3, but this reduction is more than tripled in the Southeastern US due to increased precipitation and wet deposition.


Sign in / Sign up

Export Citation Format

Share Document