pollen types
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 91)

H-INDEX

28
(FIVE YEARS 4)

2024 ◽  
Vol 84 ◽  
Author(s):  
Â. C. O. Lima ◽  
E. R. Dias ◽  
I. M. A. Reis ◽  
K. O. Carneiro ◽  
A. M. Pinheiro ◽  
...  

Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH● assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS●+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.


Caryologia ◽  
2021 ◽  
Vol 74 (3) ◽  
pp. 31-43
Author(s):  
Jun Wang ◽  
Qiang Ye ◽  
Tong Zhang ◽  
Xusheng Shi ◽  
Majid Khayatnezhad ◽  
...  

Pollen morphology of 23 species belonging to Geranium have been studied in details, which represent eight sections of two subgenera i.e., G. sect. Dissecta, Geranium, and Tuberosa of subgen. Geranium, Divaricata, Lucida, Ruberta and Trilopha of subgen. Robertium. These plant species were collected from different phytogeographical regions of Iran. The palynological investigation was done using scanning electron microscopy (SEM) techniques. Different palyno-morphological features have been observed, and the closely related species were distinguished. We used different multivariate statistical methods to reveal the species relationships. Ward clustering analyses have been done to check out the relationship among the species. The shapes of pollen grains were monad, radially symmetric, isopolar, apertures were tricolporate, and of spheroid, prolate-spheroid or sub-prolate classes. Three pollen types were recognized on the basis of differences in exine sculpturing pattern: reticulate-clavate, striate-rugulate, reticulum cristatum with clavae. Observed differences were not of diagnostic importance in subgenera and sections level. The main objective of this study is to find distinguish pollen characters in the species of the genus Geranium and to elucidate their systematics importance.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1801
Author(s):  
Estefanía González-Fernández ◽  
Sabela Álvarez-López ◽  
Alba Piña-Rey ◽  
María Fernández-González ◽  
Francisco Javier Rodríguez-Rajo

Variations in the airborne pollen load are among the current and expected impacts on plant pollination driven by climate change. Due to the potential risk for pollen-allergy sufferers, this study aimed to analyze the trends of the three most abundant spring-tree pollen types, Pinus, Platanus and Quercus, and to evaluate the possible influence of meteorological conditions. An aerobiological study was performed during the 1993–2020 period in the Ourense city (NW Spain) by means of a Hirst-type volumetric sampler. Meteorological data were obtained from the ‘Ourense’ meteorological station of METEOGALICIA. We found statistically significant trends for the Total Pollen in all cases. The positive slope values indicated an increase in pollen grains over the pollen season along the studied years, ranging from an increase of 107 to 442 pollen grains. The resulting C5.0 Decision Trees and Rule-Based Models coincided with the Spearman’s correlations since both statistical analyses showed a strong and positive influence of temperature and sunlight on pollen release and dispersal, as well as a negative influence of rainfall due to washout processes. Specifically, we found that slight rainfall and moderate temperatures promote the presence of Pinus pollen in the atmosphere and a marked effect of the daily thermal amplitude on the presence of high Platanus pollen levels. The percentage of successful predictions of the C5.0 models ranged between 62.23–74.28%. The analysis of long-term datasets of pollen and meteorological information provides valuable models that can be used as an indicator of potential allergy risk in the short term by feeding the obtained models with weather prognostics.


2021 ◽  
Author(s):  
Xiaoxia Shang ◽  
Holger Baars ◽  
Iwona S. Stachlewska ◽  
Ina Mattis ◽  
Mika Komppula

Abstract. Lidar observations were analysed to characterize atmospheric pollen at four EARLINET (European Aerosol Research Lidar Network) stations (Hohenpeißenberg, Germany; Kuopio, Finland, Leipzig, Germany; and Warsaw, Poland) during the ACTRIS-COVID-19 campaign in May 2020. The re-analysis lidar data products, after the centralized and automatic data processing with the Single Calculus Chain (SCC), were used in this study, focusing on particle backscatter coefficients at 355 nm and 532 nm, and particle linear depolarization ratios (PDRs) at 532 nm. A novel method for the characterization of the pure pollen depolarization ratio was presented, based on the non-linear least square regression fitting using lidar-derived backscatter-related Ångström exponents (BAEs) and PDRs. Under the assumption that the BAE between 355 and 532 nm should be zero (± 0.5) for pure pollen, the pollen depolarization ratios were estimated: for Kuopio and Warsaw stations, the pollen depolarization ratios at 532 nm were of 0.24 (0.19–0.28) during the birch dominant pollen periods; whereas for Hohenpeiβenberg and Leipzig stations, the pollen depolarization ratios of 0.21 (0.15–0.27) and 0.20 (0.15–0.25) were observed for periods of mixture of birch and grass pollen. The method was also applied for the aerosol classification, using two case examples from the campaign periods: the different pollen types (or pollen mixtures) were identified at Warsaw station, and dust and pollen were classified at Hohenpeißenberg station.


2021 ◽  
Vol 914 (1) ◽  
pp. 012011
Author(s):  
S S Hakim ◽  
S Siswadi ◽  
R S Wahyuningtyas ◽  
W Halwany ◽  
B Rahmanto ◽  
...  

Abstract Pollen is an essential source of proteins and vitamins for the bee diet. In addition, the diversity of pollen found in honey provides information about plant species that illustrate the bees foraging activity. This study aims to identify pollen in kelulut (Heterotrigona itama) beehives and identify its botanical origins. This study was conducted in two bee farming locations which are Layuh Village, Hulu Sungai Tengah Regency, and Gambah Luar Village, Hulu Sungai Selatan Regency, South Kalimantan Province. Pollen was collected from the beehives and stored in an airtight container. Collected pollen was identified using the acetolysis method. According to this study, there were 14 pollen types found, where only 9 of them can be identified. In the first locations (Layuh Village), most pollen came from Asteraceae (38.8%) and Arecaceae (31.2%) families. While at the Gambah Luar village, pollen was dominated by those who originated from the Rubiaceae family (31.2%). This result also revealed that Heterotrogona itama is a multi-floral bee and has various diets consisting of fruit, ornamental, and herbaceous plants. The information generated from this study can be used as plant enrichment recommendations in the honey bee farming areas.


2021 ◽  
Vol 2 ◽  
Author(s):  
Estelle Levetin

Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.


Aerobiologia ◽  
2021 ◽  
Author(s):  
Laura Šukienė ◽  
Ingrida Šaulienė ◽  
Rūta Dubakienė ◽  
Odilija Rudzevičienė ◽  
Gintautas Daunys

AbstractAirborne allergenic pollen affects a significant part of the population and the information on pollen load is a valuable tool for public health prevention. The messages should be provided in a form easily understandable for the population. The study provides new insight for the categorisation of pollen load by defining thresholds solely from aerobiological data. Using the long-term airborne pollen data of Corylus, Alnus, Betula, Poaceae, and Artemisia have been evaluated the regionality of pollen concentrations in Lithuania. SPIn and peak values of the main pollen season highlighted as regionality indicators. The largest differences between stations were found in the cases of Corylus and Artemisia.The principle enabling a group of pollen concentrations into levels has been analysed based on retrospective aerobiological data of five pollen types. Thresholds were determined by employing the lowest peak value of the pollen season and applying the 25% principle for selected pollen types. The results were verified by performing associations of defined thresholds with retrospective morbidity data of allergic rhinitis and allergic asthma in Lithuania. Determined pollen thresholds can be used in epidemiological studies requiring associations with pollen concentration. Thresholds could also complement air quality information by integrating pollen load data into public messages or contribute to the development of mHealth systems.


Author(s):  
Claudio Pérez ◽  
Mauro Covi ◽  
María Gassmann ◽  
Ana Ulke

Background and aims: The study of the seasonal and intra-seasonal variability of the airborne pollen concentration is of paramount importance to understand the relationships with the emitting vegetation and the atmospheric parameters that modulate pollen transport. This research aims to study these variabilities in Sunchales, a city located in the center-east of Argentina. M&M: Atmospheric monitoring was carried out with a Burkard trap during two seasons in 2012 and 2013 on the outskirts of the city. Results & Conclusions: The pollination periods of the studied pollen types show a delay in 2013 compared to the previous year, presumably related to a greater amount of cumulative heat units in 2012. However, the integral pollen for the period 2013 was 1.4 times higher than 2012, a fact that is not explained by accumulated precipitation but by the time of day when the hydrometeors occur. Binned pollen concentrations show that the highest concentrations coincide with the urban location of the tree sources while the herbaceous ones show an association with a rural origin. Regarding the intra-seasonal variability, the highest proportion of the airborne pollen variance accumulates on the synoptic-scale (80 - 60%) with periods between 3 and 10 days. During 2012 long waves predominated (> 5.5 days) while in 2013 medium waves prevailed (3.9 - 5.5 days).


Sign in / Sign up

Export Citation Format

Share Document