scholarly journals Mapping Distribution in Oklahoma and Raising Awareness: Purple Loosestrife (Lythrum salicaria), Multiflora Rose (Rosa multiflora), and Japanese Honeysuckle (Lonicera japonica)

2014 ◽  
Vol 14 (1) ◽  
pp. 50-66 ◽  
Author(s):  
Katherine Keil ◽  
Karen Hickman
Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 360-365 ◽  
Author(s):  
Elizabeth J. Stamm Katovich ◽  
Roger L. Becker ◽  
David W. Ragsdale

Starch levels, used as a measure of plant stress, were not consistently reduced in root or crown tissue of purple loosestrife plants after 2 yr of severeGalerucella calmariensisorGalerucella pusilla(Coleoptera: Chrysomelidae) defoliation. Early in the season, defoliation fromGalerucellaspp. approached 100%, but the majority ofLythrum salicariaplants regrew by the end of August, resulting in an average reduction of 81% of the aboveground biomass compared to the control. The stress imposed byGalerucellaspp. defoliation was less than that achieved from more severe stress imposed by mechanical shoot clipping at 2- or 4-wk intervals from June to October. Both shoot-clipping treatments killed the majority of plants after one growing season.Galerucellaspp. feeding reduced plant stature, which may reduce competitiveness. However, considering the extensive carbohydrate reserves present in the large woody crowns ofLythrum salicaria, it will require in excess of 2 yr of consistent, severe leaf defoliation to cause plant mortality. A combination of stresses, such as winter crown injury, or other biological control agents in addition toGalerucellaleaf defoliation may be required for plant mortality.


Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 143-147 ◽  
Author(s):  
Elizabeth J. Stamm Katovich ◽  
Roger L. Becker ◽  
Brad D. Kinkaid

Greenhouse studies were conducted to determine the influence of plant density and spray volume on the retention, spray deposition, efficacy, and translocation of the amine salt of triclopyr in purple loosestrife. More spray solution was retained on leaves at 935 Lha−1than at 94 Lha−1at populations of 0, 4, or 8 nontarget neighbors. Spray coverage decreased with decreasing height within the plant canopy when spray cards were placed in the top, middle, and soil surface adjacent to the central target plant. Within a population, spray card coverage generally increased as spray volume increased. Regrowth from the crown was affected by spray volume, and uniform spray coverage of the plant was required for adequate control of vegetative regrowth and was achieved with spray volumes of 374 and 935 L ha−1spray volume. Regrowth of purple loosestrife was greater at 94 Lha−1at all three plant populations indicating that less herbicide penetrated the canopy to reach the basal portion of the plant. A laboratory experiment was conducted to investigate the translocation of radiolabelled triclopyr to roots and crowns of purple loosestrife. Only 0.3 to 1.4% of absorbed14C-labelled material was translocated to roots and crowns. Low spray volumes and dense stands of purple loosestrife would likely result in poor control because inadequate amounts of triclopyr reach the basal portion of the plant and translocate to vegetative propagules.


Weed Science ◽  
2003 ◽  
Vol 51 (4) ◽  
pp. 565-568 ◽  
Author(s):  
Elizabeth J. Stamm Katovich ◽  
Roger L. Becker ◽  
Jane L. Byron

1996 ◽  
Vol 83 (3) ◽  
pp. 265-273 ◽  
Author(s):  
Mark S. Strefeler ◽  
Elizabeth Darmo ◽  
Roger L. Becker ◽  
Elizabeth J. Katovich

1998 ◽  
Vol 12 (2) ◽  
pp. 397-401 ◽  
Author(s):  
Barbra H. Mullin

Purple loosestrife is an invasive, introduced plant that is usually associated with wetland, marshy, or riparian sites. It is found across the northern tier states and provinces in North America. Purple loosestrife affects the diversity of native wetland ecosystems. Infestations lead to severe wildlife habitat degradation, loss of species diversity, and displacement of wildlife-supporting native vegetation, such as cattails and bulrushes. The plant spreads effectively along waterways, and the thick, matted root system can rapidly clog irrigation ditches, resulting in decreased water flow and increased maintenance. Effective management of purple loosestrife along waterways and in riparian areas requires integrating management strategies to prevent further introductions, detecting and eradicating new infestations, and containing and controlling large-scale infestations. Management practices that aid in the control of purple loosestrife include herbicide, physical, and biological practices. Each infestation site should be individually evaluated to determine the appropriate control measure. Factors to be considered include the proximity and type of vegetation on the site, whether the water is flowing or still, and the utilization of the site and the water (domestic, irrigation, recreation, or scenic value).


1996 ◽  
Vol 44 (1) ◽  
pp. 206-209 ◽  
Author(s):  
William S. Schlotzhauer ◽  
Sam D. Pair ◽  
Robert J. Horvat

Forests ◽  
2012 ◽  
Vol 3 (3) ◽  
pp. 573-590 ◽  
Author(s):  
Hsiao-Hsuan Wang ◽  
Carissa L. Wonkka ◽  
William E. Grant ◽  
William E. Rogers

Sign in / Sign up

Export Citation Format

Share Document