scholarly journals Accuracy of Healthcare Providers' Perception of Chest Compression Depth and Chest Recoil

Author(s):  
Dongjun Yang ◽  
Wongyu Lee ◽  
Jehyeok Oh

Although the use of audio feedback with devices such as metronomes during cardiopulmonary resuscitation (CPR) is a simple method for improving CPR quality, its effect on the quality of pediatric CPR has not been adequately evaluated. In this study, 64 healthcare providers performed CPR (with one- and two-handed chest compression (OHCC and THCC, respectively)) on a pediatric resuscitation manikin (Resusci Junior QCPR), with and without audio feedback using a metronome (110 beats/min). CPR was performed on the floor, with a compression-to-ventilation ratio of 30:2. For both OHCC and THCC, the rate of achievement of an adequate compression rate during CPR was significantly higher when performed with metronome feedback than that without metronome feedback (CPR with vs. without feedback: 100.0% (99.0, 100.0) vs. 94.0% (69.0, 99.0), p < 0.001, for OHCC, and 100.0% (98.5, 100.0) vs. 91.0% (34.5, 98.5), p < 0.001, for THCC). However, the rate of achievement of adequate compression depth during the CPR performed was significantly higher without metronome feedback than that with metronome feedback (CPR with vs. without feedback: 95.0% (23.5, 99.5) vs. 98.5% (77.5, 100.0), p = 0.004, for OHCC, and 99.0% (95.5, 100.0) vs. 100.0% (99.0, 100.0), p = 0.003, for THCC). Although metronome feedback during pediatric CPR could increase the rate of achievement of adequate compression rates, it could cause decreased compression depth.


Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Shruti Patel ◽  
Shilpa Balikai ◽  
Timothy G Elgin ◽  
Elizabeth A Newell ◽  
Tarah T Colaizy ◽  
...  

Introduction: The American Heart Association (AHA) CPR guidelines states that effective chest compression depth, rate and recoil are essential factors for establishment of return of spontaneous circulation. A recent survey from an international pediatric resuscitation collaborative showed that healthcare providers failed to meet the metrics of the AHA guidelines, with the greatest difficulty in achieving targeted chest compression depth in infants. The recommended techniques for infant compression include two finger (TFT) or two-thumb technique (TTT). We hypothesized using the heel of one palm (open palm technique, OPT) in infants will result in improved chest compression depth with decreased provider fatigue. Methods: Each participant performed three techniques including TFT, TTT, and novel open-palm technique (OPT) with randomization for sequence of techniques for each participant. Each technique was performed for 2 minutes followed by a 5-minute rest period on an infant manikin. Data were collected through Zoll R series defibrillators on chest compression depth, rate, and fraction. At the end of the study, each participant filled out a survey for difficulty level, finger fatigue, and rescuer fatigue. Results: Thirty pediatric critical care providers participated in the study consisting of 16 nurses, 9 respiratory therapists, 3 fellows, 2 nurse practitioners. The mean chest compression depth for OPT was significantly deeper (2.61 ± 0.63 cm) in comparison to TFT (2.25 ± 0.54 cm, p= 0.0004) but not significantly deeper in comparison to TTT (2.43 ± 0.46 cm, p= 0.0820). There were no significant differences between the three techniques in chest compression rate or chest compression fraction. The finger fatigue and rescuer fatigue surveys were graded from 0-10 with 10 being the most fatigue. OPT showed significantly less finger and rescuer fatigue in comparison to TTT and TFT (p<0.05). Conclusion: This study demonstrated that OPT generated improved chest compression depth with considerably less rescuer and finger fatigue. However, chest compression depth with all three techniques failed to meet the AHA infant goal of 4 cm. Further research is needed to optimize CPR performance to achieve the targeted chest compression depth in infants.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 846
Author(s):  
Liang Zhao ◽  
Yu Bao ◽  
Yu Zhang ◽  
Ruidong Ye ◽  
Aijuan Zhang

When the displacement of an object is evaluated using sensor data, its movement back to the starting point can be used to correct the measurement error of the sensor. In medicine, the movements of chest compressions also involve a reciprocating movement back to the starting point. The traditional method of evaluating the effects of chest compression depth (CCD) is to use an acceleration sensor or gyroscope to obtain chest compression movement data; from these data, the displacement value can be calculated and the CCD effect evaluated. However, this evaluation procedure suffers from sensor errors and environmental interference, limiting its applicability. Our objective is to reduce the auxiliary computing devices employed for CCD effectiveness evaluation and improve the accuracy of the evaluation results. To this end, we propose a one-dimensional convolutional neural network (1D-CNN) classification method. First, we use the chest compression evaluation criterion to classify the pre-collected sensor signal data, from which the proposed 1D-CNN model learns classification features. After training, the model is used to classify and evaluate sensor signal data instead of distance measurements; this effectively avoids the influence of pressure occlusion and electromagnetic waves. We collect and label 937 valid CCD results from an emergency care simulator. In addition, the proposed 1D-CNN structure is experimentally evaluated and compared against other CNN models and support vector machines. The results show that after sufficient training, the proposed 1D-CNN model can recognize the CCD results with an accuracy rate of more than 95%. The execution time suggests that the model balances accuracy and hardware requirements and can be embedded in portable devices.


2016 ◽  
Vol 34 (3) ◽  
pp. 433-436 ◽  
Author(s):  
Tae Hu Kim ◽  
Soo Hoon Lee ◽  
Dong Hoon Kim ◽  
Ryun Kyung Lee ◽  
So Yeon Kim ◽  
...  

2012 ◽  
Vol 29 ◽  
pp. 190 ◽  
Author(s):  
P. Schober ◽  
R. Krage ◽  
V. Lagerburg ◽  
D. van Groeningen ◽  
S. A. Loer ◽  
...  

Resuscitation ◽  
2015 ◽  
Vol 96 ◽  
pp. 13
Author(s):  
Digna María González-Otero ◽  
Sofía Ruiz de Gauna ◽  
Jesús Ruiz ◽  
Beatriz Chicote ◽  
Raquel Rivero ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sharda Udassi ◽  
Jai P Udassi ◽  
Melissa Lamb ◽  
Doug Theriaque ◽  
Arno L Zaritsky ◽  
...  

Introduction: In animals Active Compression-Decompression(ACD)-CPR improves hemodynamics compared with standard CPR (S-CPR). We evaluated the feasibility of achieving ACD-CPR with a novel, simple and inexpensive Adhesive Glove Device (AGD) in an infant manikin model using two thumb (TT) chest compression. Hypothesis: AGD-ACD CPR provides better chest decompression compared to S-CPR in an infant manikin model without excessive rescuer fatigue. Methods: Laerdal ™ Baby ALS Trainer manikin was modified to digitally record compression pressure (CP), compression depth (CD) and decompression depth (DD). The thumb portion of two oven mitts were sewn together and a Velcro adhesive patch was stitched on the underside with an encircling adjustable strap for proper fit to create the AGD. An interlocking Velcro patch was glued to the manikin chest wall. Sixteen BLS or PALS certified healthcare providers were prospectively randomized to perform either two-thumb S-CPR or AGD-ACD-CPR for 5 minutes with a 30:2 compression:ventilation ratio using a crossover design. During AGD-ACD-CPR subjects were asked to pull up during chest decompression. Rescuer heart rate (HR), respiratory rate (RR), recovery time (RT) for HR/RR to return to baseline and actual compressions delivered per minute were recorded. Subjects were blinded to data recordings. Data (mean±SEM) was analyzed using 2 sided paired t-test; p-value ≤0.05 was considered significant. Results: Chest decompression was greater with AGD-ACD-CPR; the mean DD difference was 0.11±0.02 inches, p=<0.001. Compressions given per minute were 102±21 in S-CPR group vs. 96±16 in AGD-ACD-CPR group, p=0.04. In AGD-CPR 75% and in S-CPR only 12% of subjects achieved complete recoil to or beyond baseline. There was no significant difference in CD, CP, HR, RR and RT between the groups. Conclusions: Active decompression and improved recoil was achievable with the use of our simple, inexpensive AGD in this infant CPR model. Use of our device did not result in excessive rescuer fatigue compared to S-CPR. The clinical significance of 6 less compressions/minute in the AGD-CPR group needs to be determined.


2021 ◽  
Author(s):  
Matthias Ott ◽  
Alexander Krohn ◽  
Laurence H. Bilfield ◽  
F. Dengler ◽  
C. Jaki ◽  
...  

AbstractObjectiveTo evaluate leg-heel chest compression without previous training as an alternative for medical professionals and its effects on distance to potential aerosol spread during chest compression.Methods20 medical professionals performed standard manual chest compression followed by leg-heel chest compression after a brief instruction on a manikin. We compared percentage of correct chest compression position, percentage of full chest recoil, percentage of correct compression depth, average compression depth, percentage of correct compression rate and average compression rate between both methods. In a second approach, potential aerosol spread during chest compression was visualized.ResultsThere was no significant difference between manual and leg-heel compression. The distance to potential aerosol spread could have been increased by leg-heel method.ConclusionUnder special circumstances like COVID-19-pandemic, leg-heel chest compression may be an effective alternative without previous training compared to manual chest compression while markedly increasing the distance to the patient.


Author(s):  
Anna Vögele ◽  
Michiel Jan van Veelen ◽  
Tomas Dal Cappello ◽  
Marika Falla ◽  
Giada Nicoletto ◽  
...  

Background Helicopter emergency medical services personnel operating in mountainous terrain are frequently exposed to rapid ascents and provide cardiopulmonary resuscitation (CPR) in the field. The aim of the present trial was to investigate the quality of chest compression only (CCO)‐CPR after acute exposure to altitude under repeatable and standardized conditions. Methods and Results Forty‐eight helicopter emergency medical services personnel were divided into 12 groups of 4 participants; each group was assigned to perform 5 minutes of CCO‐CPR on manikins at 2 of 3 altitudes in a randomized controlled single‐blind crossover design (200, 3000, and 5000 m) in a hypobaric chamber. Physiological parameters were continuously monitored; participants rated their performance and effort on visual analog scales. Generalized estimating equations were performed for variables of CPR quality (depth, rate, recoil, and effective chest compressions) and effects of time, altitude, carryover, altitude sequence, sex, qualification, weight, preacclimatization, and interactions were analyzed. Our trial showed a time‐dependent decrease in chest compression depth ( P =0.036) after 20 minutes at altitude; chest compression depth was below the recommended minimum of 50 mm after 60 to 90 seconds (49 [95% CI, 46–52] mm) of CCO‐CPR. Conclusions This trial showed a time‐dependent decrease in CCO‐CPR quality provided by helicopter emergency medical services personnel during acute exposure to altitude, which was not perceived by the providers. Our findings suggest a reevaluation of the CPR guidelines for providers practicing at altitudes of 3000 m and higher. Mechanical CPR devices could be of help in overcoming CCO‐CPR quality decrease in helicopter emergency medical services missions. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT04138446.


Sign in / Sign up

Export Citation Format

Share Document