Zombie deer and the species barrier. Should humans worry about it?

2020 ◽  

This commentary reports of a deer chronic disease (chronic wasting disease - CWD), which might be transmitted to humans. It is due to a prion infection, similar to the bovine spongiform encephalopathy (BSE). At the moment, it is not known if the disease may be transmitted to humans. That is why all of us should be aware of the disease, and more careful while consuming deer meat.

2002 ◽  
Vol 20 (11) ◽  
pp. 1147-1150 ◽  
Author(s):  
Jiri G. Safar ◽  
Michael Scott ◽  
Jeff Monaghan ◽  
Camille Deering ◽  
Svetlana Didorenko ◽  
...  

2012 ◽  
Vol 93 (7) ◽  
pp. 1624-1629 ◽  
Author(s):  
Rona Wilson ◽  
Chris Plinston ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Cristiano Corona ◽  
...  

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1454
Author(s):  
Satish K. Nemani ◽  
Jennifer L. Myskiw ◽  
Lise Lamoureux ◽  
Stephanie A. Booth ◽  
Valerie L. Sim

The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.


2008 ◽  
Vol 89 (4) ◽  
pp. 1086-1096 ◽  
Author(s):  
Robert D. Harrington ◽  
Timothy V. Baszler ◽  
Katherine I. O'Rourke ◽  
David A. Schneider ◽  
Terry R. Spraker ◽  
...  

Transmissible mink encephalopathy (TME) occurs as sporadic outbreaks associated with ingestion of feed presumably contaminated with some type of prion disease. Mink lack a species barrier to primary oral challenge with bovine spongiform encephalopathy, whereas they have a barrier to such challenge with scrapie. We investigated whether mink have a species barrier to chronic wasting disease (CWD) by performing primary intracerebral (IC) and primary oral challenge with CWD-positive elk brain. Primary IC challenge resulted in clinical disease in two of eight mink at 31–33 months incubation. Affected mink had spongiform vacuolation and astrocytosis within the central nervous system and immunoreactivity to disease-associated prion protein (PrPd) in brain, retina and lymph node. CWD IC recipients had significantly lower brain vacuolation and PrPd deposition scores, significantly lower cerebrocortical astrocyte counts and significantly higher hippocampal astrocyte counts than TME IC recipients. Primary oral challenge with CWD-positive elk brain (n=22) or with CWD-negative elk brain given IC (n=7) or orally (n=23) did not result in clinical or microscopic abnormalities during 42 months observation. Novel prion gene polymorphisms were identified at codon 27 (arginine/tryptophan) and codon 232 (arginine/lysine). This study shows that, whilst CWD can cause disease when given IC to mink, the lesions are not characteristic of TME, transmission is inefficient compared with TME and oral challenge does not result in disease. The demonstration of a species barrier in cervid-to-mustelid prion transmission indicates that mink are unlikely to be involved in natural CWD transmission.


1993 ◽  
Vol 30 (1) ◽  
pp. 36-45 ◽  
Author(s):  
E. S. Williams ◽  
S. Young

The pathology of the central nervous system of nine mule deer ( Odocoileus hemionus) and six elk ( Cervus elaphus nelsoni) with chronic wasting disease, a spongiform encephalopathy of mule deer and elk, was studied by light microscopy. Lesions were similar in both species and were characterized by spongiform transformation of gray matter, intracytoplasmic vacuolation of neurons, neuronal degeneration and loss, astrocytic hypertrophy and hyperplasia, occurrence of amyloid plaques, and absence of significant inflammatory response. Distribution and severity of lesions were evaluated at 57 locations; there were only minor differences between deer and elk. Consistent, severe lesions occurred in olfactory tubercle and cortex, hypothalamus, and the parasympathetic vagal nucleus of deer, and sections examined from these regions would be sufficient to establish a diagnosis of chronic wasting disease. Lesions were milder in these locations in elk but were sufficiently apparent to be of diagnostic value. Other differences included increased severity of lesions in some thalamic nuclei in elk in contrast to deer, the occurrence of amyloid plaques demonstrable by hematoxylin and eosin and histochemical stains in deer in contrast to elk, and the presence of mild white matter lesions in elk but not in deer. Lesions of chronic wasting disease were qualitatively comparable to those of scrapie, bovine spongiform encephalopathy, transmissible mink encephalopathy, and the human spongiform encephalopathies. Topographic distribution and lesion severity of chronic wasting disease were most similar to those of scrapie and bovine spongiform encephalopathy. Duration of clinical disease did not significantly influence lesion distribution or severity in either species.


2002 ◽  
Vol 76 (23) ◽  
pp. 12365-12368 ◽  
Author(s):  
Richard E. Race ◽  
Anne Raines ◽  
Thierry G. M. Baron ◽  
Michael W. Miller ◽  
Allen Jenny ◽  
...  

ABSTRACT Analysis of abnormal prion protein glycoform patterns from chronic wasting disease (CWD)-affected deer and elk, scrapie-affected sheep and cattle, and cattle with bovine spongiform encephalopathy failed to identify patterns capable of reliably distinguishing these transmissible spongiform encephalopathy diseases. However, PrP-res patterns sometimes differed among individual animals, suggesting infection by different or multiple CWD strains in some species.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zerui Wang ◽  
Kefeng Qin ◽  
Manuel V. Camacho ◽  
Ignazio Cali ◽  
Jue Yuan ◽  
...  

AbstractChronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.


2007 ◽  
Vol 51 (10) ◽  
pp. 1039-1043 ◽  
Author(s):  
Kentaro Masujin ◽  
Kimi Shimada ◽  
Kumiko M. Kimura ◽  
Morikazu Imamura ◽  
Ayumu Yoshida ◽  
...  

2009 ◽  
Vol 83 (18) ◽  
pp. 9608-9610 ◽  
Author(s):  
Brent Race ◽  
Kimberly Meade-White ◽  
Richard Race ◽  
Bruce Chesebro

ABSTRACT Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.


Sign in / Sign up

Export Citation Format

Share Document