human prion protein
Recently Published Documents





2022 ◽  
Fatemeh Rahimi Gharemirshamloo ◽  
Ranabir Majumder ◽  
Kourosh Bamdad ◽  
Fateme Frootan ◽  
Cemal Un

Abstract The Human Prion protein gene (PRNP) is mapped to short arm of chromosome 20 (20pter-12). Prion disease is associated with mutations in the Prion Protein encoding gene sequence. The mutations that occur in the prion protein could be divided into two types based on their influence on pathogenic potential: 1. Mutations that cause disease. 2. Disease-resistance mutations. Earlier studies found that the mutation G127V in the PRNP increases protein stability, whereas the mutation E200K, which has the highest mutation rate in the Prion protein, causes Creutzfeldt–Jakob disease (CJD) in humans and induces protein aggregation. We used a variety of bioinformatic algorithms, including SIFT, PolyPhen, I-Mutant, PhD-SNP, and SNP&GO, to predict the association of the E200K mutation with Prion disease. MD simulation is performed and graphs for RMSD, RMSF, Rg, DSSP, PCA, porcupine and FEL are generated to confirm and prove the stability of the wild type and mutant protein structures. The protein is analyzed for aggregation, and the results indicates more fluctuations in the protein structure during the simulation by the E200K mutation, however the G127V mutation makes protein structure stable against aggregation during the simulation.

Biochimie ◽  
2021 ◽  
Leandro Oliveira Bortot ◽  
Victor Lopes Rangel ◽  
Francesca A. Pavlovici ◽  
Kamel El Omari ◽  
Armin Wagner ◽  

2021 ◽  
Qiuye Li ◽  
Christopher P. Jaroniec ◽  
Witold K. Surewicz

One of the least understood aspects of prion diseases is the structure of infectious prion protein aggregates. Here we report a high-resolution cryo-EM structure of amyloid fibrils formed by human prion protein with Y145Stop mutation that is associated with a familial prion disease. This structural insight allows us not only to explain previous biochemical findings, but also provides direct support for the conformational adaptability model of prion transmissibility barriers.

Mariangela Agamennone ◽  
Loriano Storchi ◽  
Alessandro Marrone ◽  
Roberto Paciotti

AbstractA multilayered computational workflow was designed to identify a druggable binding site on the surface of the E200K pathogenic mutant of the human prion protein, and to investigate the effect of the binding of small molecules in the inhibition of the early aggregation of this protein. At this purpose, we developed an efficient computational tool to scan the molecular interaction properties of a whole MD trajectory, thus leading to the characterization of plausible binding regions on the surface of PrP-E200K. These structural data were then employed to drive structure-based virtual screening and fragment-based approaches to the seeking of small molecular binders of the PrP-E200K. Six promising compounds were identified, and their binding stabilities were assessed by MD simulations. Therefore, analyses of the molecular electrostatic potential similarity between the bound complexes and unbound protein evidenced their potential activity as charged-based inhibitors of the PrP-E200K early aggregation.

Sign in / Sign up

Export Citation Format

Share Document