transmissible mink encephalopathy
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 6)

H-INDEX

23
(FIVE YEARS 2)

2020 ◽  
Author(s):  
E.D. Cassmann ◽  
S.J. Moore ◽  
R.D. Kokemuller ◽  
A. Balkema-Buschmann ◽  
M. H. Groschup ◽  
...  

Abstract Background Transmissible mink encephalopathy (TME) is a fatal neurologic disease of farmed mink. Evidence indicates that TME and L-BSE are similar and may be linked in some outbreaks of TME. We previously transmitted bovine adapted TME (bTME) to sheep. The present study compared ovine passaged bTME (o-bTME) to C-BSE and L-BSE in transgenic mice expressing wild type bovine prion protein (TgBovXV). To directly compare the transmission efficiency of all prion strains in this study, we considered the attack rates and mean incubation periods. Additional methods for strain comparison were utilized including lesion profiles, fibril stability, and western blotting. Results Sheep donor genotype elicited variable disease phenotypes in bovinized mice. Inoculum derived from a sheep with the VRQ/VRQ genotype (o-bTMEVV) resulted in an attack rate, incubation period, western blot profile, and neuropathology most similar to bTME and L-BSE. Conversely, donor material from a sheep with the VRQ/ARQ genotype (o-bTMEAV) elicited a phenotype distinct from o-bTMEVV, bTME and L-BSE. The TSE with the highest transmission efficiency in bovinized mice was L-BSE. The tendency to efficiently transmit to TgBovXV mice decreased in the order bTME, C-BSE, o-bTMEVV, and o-bTMEAV. The transmission efficiency of L-BSE was approximately 1.3 times higher than o-bTMEVV and 3.2 times higher than o-bTMEAV.Conclusions Our findings provide insight on how sheep host genotype modulates strain genesis and influences interspecies transmission characteristics. Given that the transmission efficiencies of L-BSE and bTME are higher than C-BSE, coupled with previous reports of L-BSE transmission to mice expressing the human prion protein, continued monitoring for atypical BSE is advisable in order to prevent occurrences of interspecies transmission that may affect humans or other species.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Eric Cassmann ◽  
Sarah Jo Moore ◽  
Robyn Kokemuller ◽  
Anne Balkema-Buschmann ◽  
Martin Groschup ◽  
...  

Abstract Background Transmissible mink encephalopathy (TME) is a fatal neurologic disease of farmed mink. Evidence indicates that TME and L-BSE are similar and may be linked in some outbreaks of TME. We previously transmitted bovine adapted TME (bTME) to sheep. The present study compared ovine passaged bTME (o-bTME) to C-BSE and L-BSE in transgenic mice expressing wild type bovine prion protein (TgBovXV). To directly compare the transmission efficiency of all prion strains in this study, we considered the attack rates and mean incubation periods. Additional methods for strain comparison were utilized including lesion profiles, fibril stability, and western blotting. Results Sheep donor genotype elicited variable disease phenotypes in bovinized mice. Inoculum derived from a sheep with the VRQ/VRQ genotype (o-bTMEVV) resulted in an attack rate, incubation period, western blot profile, and neuropathology most similar to bTME and L-BSE. Conversely, donor material from a sheep with the VRQ/ARQ genotype (o-bTMEAV) elicited a phenotype distinct from o-bTMEVV, bTME and L-BSE. The TSE with the highest transmission efficiency in bovinized mice was L-BSE. The tendency to efficiently transmit to TgBovXV mice decreased in the order bTME, C-BSE, o-bTMEVV, and o-bTMEAV. The transmission efficiency of L-BSE was approximately 1.3 times higher than o-bTMEVV and 3.2 times higher than o-bTMEAV. Conclusions Our findings provide insight on how sheep host genotype modulates strain genesis and influences interspecies transmission characteristics. Given that the transmission efficiencies of L-BSE and bTME are higher than C-BSE, coupled with previous reports of L-BSE transmission to mice expressing the human prion protein, continued monitoring for atypical BSE is advisable in order to prevent occurrences of interspecies transmission that may affect humans or other species.


2020 ◽  
Author(s):  
E.D. Cassmann ◽  
S.J. Moore ◽  
R.D. Kokemuller ◽  
A. Balkema-Buschmann ◽  
M. H. Groschup ◽  
...  

Abstract BackgroundTransmissible mink encephalopathy (TME) is a fatal neurologic disease of farmed mink. Evidence indicates that TME and L-BSE are similar and may be linked in some outbreaks of TME. We previously transmitted bovine adapted TME (bTME) to sheep. The present study compared ovine passaged bTME (o-bTME) to C-BSE and L-BSE in transgenic mice expressing wild type bovine prion protein (TgBovXV). To directly compare the transmission efficiency of all prion strains in this study, we considered the attack rates and mean incubation periods. Additional methods for strain comparison were utilized including lesion profiles, fibril stability, and western blotting. ResultsSheep donor genotype elicited variable disease phenotypes in bovinized mice. Inoculum derived from a sheep with the VRQ/VRQ genotype (o-bTMEVV) resulted in an attack rate, incubation period, western blot profile, and neuropathology most similar to bTME and L-BSE. Conversely, donor material from a sheep with the VRQ/ARQ genotype (o-bTMEAV) elicited a phenotype distinct from o-bTMEVV, bTME and L-BSE. The TSE with the highest transmission efficiency in bovinized mice was L-BSE. The tendency to efficiently transmit to TgBovXV mice decreased in the order bTME, C-BSE, o-bTMEVV, and o-bTMEAV. The transmission efficiency of L-BSE was approximately 1.3 times higher than o-bTMEVV and 3.2 times higher than o-bTMEAV.ConclusionsOur findings provide insight on how sheep host genotype modulates strain genesis and influences interspecies transmission characteristics. Given that the transmission efficiencies of L-BSE and bTME are higher than C-BSE, coupled with previous reports of L-BSE transmission to mice expressing the human prion protein, continued monitoring for atypical BSE is advisable in order to prevent occurrences of interspecies transmission that may affect humans or other species.


2020 ◽  
Author(s):  
E.D. Cassmann ◽  
S.J. Moore ◽  
R.D. Kokemuller ◽  
A. Balkema-Buschmann ◽  
M. H. Groschup ◽  
...  

Abstract Background Transmissible mink encephalopathy (TME) is a fatal neurologic disease of farmed mink. Evidence indicates that TME and L-BSE are similar and may be linked in some outbreaks of TME. We previously transmitted bovine adapted TME (bTME) to sheep. The present study compared ovine passaged bTME (o-bTME) to C-BSE and L-BSE in transgenic mice expressing wild type bovine prion protein (TgBovXV). To directly compare the transmission efficiency of all prion strains in this study, we considered the attack rates and mean incubation periods. Additional methods for strain comparison were utilized including lesion profiles, fibril stability, and western blotting. Results Sheep donor genotype elicited variable disease phenotypes in bovinized mice. Inoculum derived from a sheep with the VRQ/VRQ genotype (o-bTMEVV) resulted in an attack rate, incubation period, western blot profile, and neuropathology most similar to bTME and L-BSE. Conversely, donor material from a sheep with the VRQ/ARQ genotype (o-bTMEAV) elicited a phenotype distinct from o-bTMEVV, bTME and L-BSE. The TSE with the highest transmission efficiency in bovinized mice was L-BSE. The tendency to efficiently transmit to TgBovXV mice decreased in the order bTME, C-BSE, o-bTMEVV, and o-bTMEAV. The transmission efficiency of L-BSE was approximately 1.3 times higher than o-bTMEVV and 3.2 times higher than o-bTMEAV. Conclusions Our findings provide insight on how sheep host genotype modulates strain genesis and influences interspecies transmission characteristics. Given that the transmission efficiencies of L-BSE and bTME are higher than C-BSE, coupled with previous reports of L-BSE transmission to mice expressing the human prion protein, continued monitoring for atypical BSE is advisable in order to prevent occurrences of interspecies transmission that may affect humans or other species.


2019 ◽  
Vol 31 (2) ◽  
pp. 200-209 ◽  
Author(s):  
S. Jo Moore ◽  
Jodi D. Smith ◽  
Jürgen A. Richt ◽  
Justin J. Greenlee

Prion diseases are neurodegenerative diseases characterized by the accumulation of misfolded prion protein (PrPSc) in the brain and other tissues. Animal prion diseases include scrapie in sheep, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy (TME) in ranch-raised mink. We investigated the susceptibility of raccoons to various prion disease agents and compared the clinicopathologic features of the resulting disease. Raccoon kits were inoculated intracranially with the agents of raccoon-passaged TME (TMERac), bovine-passaged TME (TMEBov), hamster-adapted drowsy (TMEDY) or hyper TME (TMEHY), CWD from white-tailed deer (CWDWtd) or elk (CWDElk), or atypical (Nor98) scrapie. Raccoons were euthanized when they developed clinical signs of prion disease or at study endpoint (<82 mo post-inoculation). Brain was examined for the presence of spongiform change, and disease-associated PrPSc was detected using an enzyme immunoassay, western blot, and immunohistochemistry. All raccoons inoculated with the agents of TMERac and TMEBov developed clinical disease at ~6.6 mo post-inoculation, with widespread PrPSc accumulation in central nervous system tissues. PrPSc was detected in the brain of 1 of 4 raccoons in each of the CWDWtd-, CWDElk-, and TMEHY-inoculated groups. None of the raccoons inoculated with TMEDY or atypical scrapie agents developed clinical disease or detectable PrPSc accumulation. Our results indicate that raccoons are highly susceptible to infection with raccoon- and bovine-passaged TME agents, whereas CWD isolates from white-tailed deer or elk and hamster-adapted TMEHY transmit poorly. Raccoons appear to be resistant to infection with hamster-adapted TMEDY and atypical scrapie agents.


2016 ◽  
Vol 90 (12) ◽  
pp. 5715-5723 ◽  
Author(s):  
Katie A. Langenfeld ◽  
Ronald A. Shikiya ◽  
Anthony E. Kincaid ◽  
Jason C. Bartz

ABSTRACTWhen multiple prion strains are inoculated into the same host, they can interfere with each other. Strains with long incubation periods can suppress conversion of strains with short incubation periods; however, nothing is known about the conversion of the long-incubation-period strain during strain interference. To investigate this, we inoculated hamsters in the sciatic nerve with long-incubation-period strain 139H prior to superinfection with the short-incubation-period hyper (HY) strain of transmissible mink encephalopathy (TME). First, we found that 139H is transported along the same neuroanatomical tracks as HY TME, adding to the growing body of evidence indicating that PrPScfavors retrograde transneuronal transport. In contrast to a previous report, we found that 139H interferes with HY TME infection, which is likely due to both strains targeting the same population of neurons following sciatic nerve inoculation. Under conditions where 139H blocked HY TME from causing disease, the strain-specific properties of PrPSccorresponded with the strain that caused disease, consistent with our previous findings. In the groups of animals where incubation periods were not altered, we found that the animals contained a mixture of 139H and HY TME PrPSc. This finding expands the definition of strain interference to include conditions where PrPScformation is altered yet disease outcome is unaltered. Overall, these results contradict the premise that prion strains are static entities and instead suggest that strain mixtures are dynamic regardless of incubation period or clinical outcome of disease.IMPORTANCEPrions can exist as a mixture of strains in naturally infected animals, where they are able to interfere with the conversion of each other and to extend incubation periods. Little is known, however, about the dynamics of strain conversion under conditions where incubation periods are not affected. We found that inoculation of the same animal with two strains can result in the alteration of conversion of both strains under conditions where the resulting disease was consistent with infection with only a single strain. These data challenge the idea that prion strains are static and suggests that strain mixtures are more dynamic than previously appreciated. This observation has significant implications for prion adaptation.


Pathogens ◽  
2013 ◽  
Vol 2 (3) ◽  
pp. 520-532 ◽  
Author(s):  
Emmanuel Comoy ◽  
Jacqueline Mikol ◽  
Marie-Madeleine Ruchoux ◽  
Valérie Durand ◽  
Sophie Luccantoni-Freire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document