scholarly journals NPC1 silent variant affecting splicing (p.Val562Val) and unfold protein response in an NPC patient

Authorea ◽  
2020 ◽  
Author(s):  
Marisa Encarna o ◽  
Maria Coutinho ◽  
Soo Min Cho ◽  
Maria Cardoso ◽  
Isaura Ribeiro ◽  
...  
2011 ◽  
Vol 185 (4S) ◽  
Author(s):  
Masafumi Kumano ◽  
Junya Furukawa ◽  
Amina Zoubeidi ◽  
Shiota Masaki ◽  
Eliana Beraldi ◽  
...  

2013 ◽  
pp. 1-1
Author(s):  
Philip Voyias ◽  
Ciara McCarthy ◽  
Adaikala Antonysunil ◽  
Warunee Kumsaiyai ◽  
Alison Harte ◽  
...  

2014 ◽  
Author(s):  
Mohammed A Alfattah ◽  
Paul Anthony McGettigan ◽  
John Arthur Browne ◽  
Khalid M Alkhodair ◽  
Katarzyna Pluta ◽  
...  

2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


Sign in / Sign up

Export Citation Format

Share Document