Avian reovirus infection activate the cellular unfold protein response and induced apoptosis via ATF6-dependent mechanism

2021 ◽  
pp. 198346
Author(s):  
Chengcheng Zhang ◽  
Jiashu Hu ◽  
Xiuling Wang ◽  
Yuyang Wang ◽  
Mengjiao Guo ◽  
...  
2014 ◽  
Vol 5 (12) ◽  
pp. e1555-e1555 ◽  
Author(s):  
Y Estornes ◽  
M A Aguileta ◽  
C Dubuisson ◽  
J De Keyser ◽  
V Goossens ◽  
...  

Abstract Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and results in the activation of the unfolded protein response (UPR), which aims at restoring ER homeostasis. However, when the stress is too severe the UPR switches from being a pro-survival response to a pro-death one, and the molecular mechanisms underlying ER stress-mediated death have remained incompletely understood. In this study, we identified receptor interacting protein kinase 1 (RIPK1)—a kinase at the crossroad between life and death downstream of various receptors—as a new regulator of ER stress-induced death. We found that Ripk1-deficient MEFs are protected from apoptosis induced by ER stressors, which is reflected by reduced caspase activation and PARP processing. Interestingly, the pro-apoptotic role of Ripk1 is independent of its kinase activity, is not regulated by its cIAP1/2-mediated ubiquitylation, and does not rely on the direct regulation of JNK or CHOP, two reportedly main players in ER stress-induced death. Instead, we found that ER stress-induced apoptosis in these cells relies on death receptor-independent activation of caspase-8, and identified Ripk1 upstream of caspase-8. However, in contrast to RIPK1-dependent apoptosis downstream of TNFR1, we did not find Ripk1 associated with caspase-8 in a death-inducing complex upon unresolved ER stress. Our data rather suggest that RIPK1 indirectly regulates caspase-8 activation, in part via interaction with the ER stress sensor inositol-requiring protein 1 (IRE1).


Authorea ◽  
2020 ◽  
Author(s):  
Marisa Encarna o ◽  
Maria Coutinho ◽  
Soo Min Cho ◽  
Maria Cardoso ◽  
Isaura Ribeiro ◽  
...  

2021 ◽  
Author(s):  
Mo Chen ◽  
Suyong Choi ◽  
Tianmu Wen ◽  
Changliang Chen ◽  
Narendra Thapa ◽  
...  

The tumor suppressor p53 and the phosphoinositide 3-kinase (PI3K)-Akt pathway have fundamental roles in regulating cell growth, apoptosis and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear Akt activation by a p53-dependent mechanism that is independent from the canonical membrane-localized PI3K-Akt pathway. Upon genotoxic stress a nuclear p53-PI3,4,5P3 complex is generated in regions devoid of membranes by a nuclear PI3K, and this complex recruits all the kinases required to activate Akt and phosphorylate FOXOs, inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear Akt in an on/off fashion upon stress, whereas mutant p53 stimulates high basal Akt activity, indicating a fundamental difference. The nuclear p53-phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, underscoring its therapeutic relevance.


2020 ◽  
Vol 9 (4) ◽  
pp. 454-460
Author(s):  
Lihua Ren ◽  
Jianhui Liu ◽  
Jialiu Wei ◽  
Yefan Du ◽  
Kaiyue Zou ◽  
...  

Abstract With increasing air pollution, silica nanoparticles (SiNPs), as a main inorganic member of PM2.5, have gained increasing attention to its reproductive toxicity. Most existing studies focused on the acute exposure, while data regarding the chronic effect of SiNPs on reproduction is limited. Therefore, this study was designed to evaluate the chronic toxicity of SiNPs on spermatocyte cells. The cells were continuously exposed to SiNPs for 1, 10, 20 and 30 generations at dose of 5 μg/ml SiNPs for 24 h per generation after attachment. The results showed that with the increasing generations of the exposure, SiNPs decreased the viability of spermatocyte cells, induced apoptosis and increased the level of reactive oxygen species in spermatocyte cells. Moreover, SiNPs increased the protein expression of GRP-78, p-PERK, IRE1α, ATF6 and Cleaved caspase-3 in spermatocyte cells, suggesting that SiNPs improved unfolded protein response (UPR) and apoptosis. The present results indicated that the long-term and low-dose exposure to SiNPs could induce apoptosis by triggering ROS-mediated UPR in spermatocyte cells.


2001 ◽  
Vol 75 (23) ◽  
pp. 11275-11283 ◽  
Author(s):  
Penny Clarke ◽  
Suzanne M. Meintzer ◽  
Christian Widmann ◽  
Gary L. Johnson ◽  
Kenneth L. Tyler

ABSTRACT Viral infection often perturbs host cell signaling pathways including those involving mitogen-activated protein kinases (MAPKs). We now show that reovirus infection results in the selective activation of c-Jun N-terminal kinase (JNK). Reovirus-induced JNK activation is associated with an increase in the phosphorylation of the JNK-dependent transcription factor c-Jun. Reovirus serotype 3 prototype strains Abney (T3A) and Dearing (T3D) induce significantly more JNK activation and c-Jun phosphorylation than does the serotype 1 prototypic strain Lang (T1L). T3D and T3A also induce more apoptosis in infected cells than T1L, and there was a significant correlation between the ability of these viruses to phosphorylate c-Jun and induce apoptosis. However, reovirus-induced apoptosis, but not reovirus-induced c-Jun phosphorylation, is inhibited by blocking TRAIL/receptor binding, suggesting that apoptosis and c-Jun phosphorylation involve parallel rather than identical pathways. Strain-specific differences in JNK activation are determined by the reovirus S1 and M2 gene segments, which encode viral outer capsid proteins (ς1 and μ1c) involved in receptor binding and host cell membrane penetration. These same gene segments also determine differences in the capacity of reovirus strains to induce apoptosis, and again a significant correlation between the capacity of T1L × T3D reassortant reoviruses to both activate JNK and phosphorylate c-Jun and to induce apoptosis was shown. The extracellular signal-related kinase (ERK) is also activated in a strain-specific manner following reovirus infection. Unlike JNK activation, ERK activation could not be mapped to specific reovirus gene segments, suggesting that ERK activation and JNK activation are triggered by different events during virus-host cell interaction.


2006 ◽  
Vol 75 (2) ◽  
pp. 684-696 ◽  
Author(s):  
Steven P. O'Hara ◽  
Aaron J. Small ◽  
Jeremy B. Nelson ◽  
Andrew D. Badley ◽  
Xian-Ming Chen ◽  
...  

ABSTRACT While Cryptosporidium parvum infection of the intestine has been reported in both immunocompetent and immunocompromised individuals, biliary infection is seen primarily in adult AIDS patients and is associated with development of AIDS cholangiopathy. However, the mechanisms of pathogen-induced AIDS cholangiopathy remain unclear. Since we previously demonstrated that the Fas/Fas ligand (FasL) system is involved in paracrine-mediated C. parvum cytopathicity in cholangiocytes, we also tested the potential synergistic effects of human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat)-mediated FasL regulation on C. parvum-induced apoptosis in cholangiocytes by semiquantitative reverse transcription-PCR, immunoblotting, immunofluorescence analysis, and immunogold electron microscopy. H69 cells do not express CXCR4 and CCR5, which are receptors required for direct HIV-1 viral infection. However, recombinant biologically active HIV-1-associated Tat protein increased FasL expression in the cytoplasm of cholangiocytes without a significant increase in apoptosis. We found that C. parvum-induced apoptosis was associated with translocation of intracellular FasL to the cell membrane surface and release of full-length FasL from infected H69 cells. Tat significantly (P < 0.05) increased C. parvum-induced apoptosis in bystander cells in a dose-dependent manner. Moreover, Tat enhanced both C. parvum-induced FasL membrane translocation and release of full-length FasL. In addition, the FasL neutralizing antibody NOK-1 and the caspase-8 inhibitor Z-IETD-fmk both blocked C. parvum-induced apoptosis in cholangiocytes. The data demonstrated that HIV-1 Tat enhances C. parvum-induced cholangiocyte apoptosis via a paracrine-mediated, FasL-dependent mechanism. Our results suggest that concurrent active HIV replication, with associated production of Tat protein, and C. parvum infection synergistically increase cholangiocyte apoptosis and thus jointly contribute to AIDS-related cholangiopathies.


2016 ◽  
Vol 311 (5) ◽  
pp. L846-L854 ◽  
Author(s):  
Hang Nguyen ◽  
Bruce D. Uhal

Recent work from this laboratory showed that endoplasmic reticulum (ER) stress-induced apoptosis of alveolar epithelial cells (AECs) is regulated by the autocrine angiotensin (ANG)II/ANG1-7 system. The proteasome inhibitor MG132 or surfactant protein C (SP-C) BRICHOS domain mutation G100S induced apoptosis in human AECs by activating the proapoptotic cathepsin D and reducing antiapoptotic angiotensin converting enzyme-2 (ACE-2). This study tested the hypothesis that ER stress-induced apoptosis of human AECs might be mediated by influence of the unfolded protein response (UPR) on the autocrine ANGII/ANG1-7 system. A549 cells were challenged with MG132 or SP-C BRICHOS domain mutant G100S to induce ER stress and activation of UPR pathways. The results showed that either MG132 or G100S SP-C mutation activated all three canonical pathways of the UPR (IRE1/XBP1, ATF6, and PERK/eIF2α), which led to a significant increase in cathepsin D or in TACE (an ACE-2 ectodomain shedding enzyme) and eventually caused AEC apoptosis. However, ER stress-induced AEC apoptosis could be prevented by chemical chaperone or by UPR blockers. It is also suggested that ATF6 and IRE1 pathways might play important role in regulation of angiotensin system. These data demonstrate that ER stress induces apoptosis in human AECs through mediation of UPR pathways, which in turn regulate the autocrine ANGII/ANG1-7 system. They also demonstrated that ER stress-induced AEC apoptosis can be blocked by inhibition of UPR signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document