protein size
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 43)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mario E Di Salvo ◽  
Kimberly A Reynolds ◽  
Milo M Lin

Two functional protein sequences can sometimes be separated by a fitness valley - a series of low or non-functional intermediate mutations that must be traversed to reach a more optimal or refined function. Time-varying selection pressure modulates evolutionary sampling of such valleys. Yet, how the amplitude and frequency of fluctuating selection influence the rate of protein evolution is poorly understood. Here, we derive a simple equation for the time-dependent probability of crossing a fitness valley as a function of evolutionary parameters: valley width, protein size, mutation rate, and selection pressure. The equation predicts that, under low selection pressure, the valley crossing rate is magnified by a factor that depends exponentially on valley width. However, after a characteristic time set by the evolutionary parameters, the rate rapidly decays. Thus, there is an optimal frequency of selection-pressure fluctuations that maximizes the rate of protein optimization. This result is reminiscent of the resonance frequency in mechanical systems. The equation unites empirical and theoretical results that were previously disconnected, and is consistent with time-dependent in vitro and clinical data. More generally, these results suggest that seasonal and climate oscillations could synchronously drive protein evolution at the resonant frequency across a range of organism hosts and timescales. This theory could also be applied to optimize de novo protein evolution in laboratory directed evolution using time-varying protocols.


2021 ◽  
Author(s):  
David N Winogradoff ◽  
Han-Yi Chou ◽  
Christopher Maffeo ◽  
Aleksei Aksimentiev

Nuclear pore complexes (NPCs) control biomolecular transport in and out of the nucleus. Disordered nucleoporins in the complex's central pore form a permeation barrier, preventing unassisted transport of large biomolecules. Here, we combine coarse-grained simulations of an experimentally-derived NPC structure with a theoretical model to determine the microscopic mechanism of passive transport. Brute-force simulations of protein diffusion through the NPC reveal telegraph-like behavior, where prolonged diffusion on one side of the NPC is interrupted by rapid crossings to the other. We rationalize this behavior using a theoretical model that reproduces the energetics and kinetics of permeation solely from statistical analysis of transient voids within the disordered mesh. As the protein size increases, the mesh transforms from a soft to a hard barrier, enabling orders-of-magnitude reduction in permeation rate for proteins beyond the percolation size threshold. Our model enables exploration of alternative NPC architectures and sets the stage for uncovering molecular mechanisms of facilitated nuclear transport.


2021 ◽  
Author(s):  
Ameya Harmalkar ◽  
Sai Pooja Mahajan ◽  
Jeffrey J. Gray

Despite the progress in prediction of protein complexes over the last decade, recent blind protein complex structure prediction challenges revealed limited success rates (less than 20% models with DockQ score > 0.4) on targets that exhibit significant conformational change upon binding. To overcome limitations in capturing backbone motions, we developed a new, aggressive sampling method that incorporates temperature replica exchange Monte Carlo (T-REMC) and conformational sampling techniques within docking protocols in Rosetta. Our method, ReplicaDock 2.0, mimics induced-fit mechanism of protein binding to sample backbone motions across putative interface residues on-the-fly, thereby recapitulating binding-partner induced conformational changes. Furthermore, ReplicaDock 2.0 clocks in at 150-500 CPU hours per target (protein-size dependent); a runtime that is significantly faster than Molecular Dynamics based approaches. For a benchmark set of 88 proteins with moderate to high flexibility (unbound-to-bound iRMSD over 1.2 Angstroms), ReplicaDock 2.0 successfully docks 61% of moderately flexible complexes and 35% of highly flexible complexes. Additionally, we demonstrate that by biasing backbone sampling particularly towards residues comprising flexible loops or hinge domains, highly flexible targets can be predicted to under 2 angstrom accuracy. This indicates that additional gains are possible when mobile protein segments are known.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Binh An Truong Quang ◽  
Ruby Peters ◽  
Davide A. D. Cassani ◽  
Priyamvada Chugh ◽  
Andrew G. Clark ◽  
...  

AbstractIn animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maciej Gielnik ◽  
Michał Taube ◽  
Lilia Zhukova ◽  
Igor Zhukov ◽  
Sebastian K. T. S. Wärmländer ◽  
...  

AbstractThe cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.


2021 ◽  
Author(s):  
Javier Gómez Ortega ◽  
Sonika Tyagi ◽  
Christen Mirth ◽  
Matthew Piper

Dietary nutrient composition is essential for shaping important fitness traits and behaviours. Many organisms are protein limited and for Drosophila melanogaster, this limitation manifests at the level of the single most limiting essential Amino Acid (AA) in the diet. The identity of this AA and its effects on female fecundity is readily predictable by a procedure called exome matching in which the sum of AAs encoded by a consumer's exome is used to predict the relative proportion of AAs required in its diet. However, the exome matching calculation does not weight AA contributions to the overall profile by protein size or expression. Here we update the exome matching calculation to include these weightings. Surprisingly, although nearly half of the transcriptome is differentially expressed when comparing male and female flies, we found that creating transcriptome-weighted exome matched diets for each sex did not enhance their fecundity over that supported by exome matching alone. These data indicate that while organisms may require different amounts of dietary protein across conditions, the relative proportion of the constituent AAs remains constant. Interestingly, we also found remarkable conservation of exome matched AA profiles across taxa and that the composition of these profiles could be explained by the metabolic costs of microbial AA synthesis. Thus, it appears that bioenergetic constraints amongst autotrophs shape the relative proportion of AAs that are available across trophic levels and that that this constrains biomass composition.


2021 ◽  
Author(s):  
Adel Alharbi ◽  
Nongfei Sheng ◽  
Katie Nicol ◽  
Nicklas Strömberg ◽  
Edward Hollox

Most genetic variation in humans occurs in a pattern consistent with neutral evolution, but a small subset is maintained by balancing selection. Identifying loci under balancing selection is important not only for understanding the processes explaining variation in the genome, but also to identify loci with alleles that affect response to the environment and disease. Several genome scans using genetic variation data have identified the 5-prime end of the DMBT1 gene as a region undergoing balancing selection. DMBT1 encodes the pattern-recognition glycoprotein DMBT1, also known as SALSA, gp340 or salivary agglutinin. It binds to a wide variety of pathogens through a tandemly-arranged scavenger receptor cysteine-rich (SRCR) domain, with the number of SRCR domains varying in humans. Here we use expression analysis, linkage in pedigrees, and long range single transcript sequencing, to show that the signal of balancing selection is driven by one haplotype usually carrying shorter SRCR repeats, and another usually carrying a longer SRCR repeat, within the coding region of DMBT1. The DMBT1 protein size isoform encoded by a shorter SRCR domain repeat allele showed complete loss of binding of a cariogenic and invasive Streptococcus mutans strain in contrast to the long SRCR allele. Taken together, our results suggest that balancing selection at DMBT1 is due to host-microbe interactions of encoded SRCR tandem repeat alleles.


2021 ◽  
Vol MA2021-02 (56) ◽  
pp. 1643-1643
Author(s):  
Pengfei Zhang ◽  
Guangzhong Ma ◽  
Zijian Wan ◽  
Nongjian Tao ◽  
Shaopeng Wang

Author(s):  
Stephanie Steinberger ◽  
Sobha Karuthedom George ◽  
Lucia Lauková ◽  
René Weiss ◽  
Carla Tripisciano ◽  
...  

AbstractThe emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible. Graphical abstract


2021 ◽  
Author(s):  
Margarita A. Kurnaeva ◽  
Arthur O. Zalevsky ◽  
Eugene A. Arifulin ◽  
Olga M. Lisitsyna ◽  
Anna V. Tvorogova ◽  
...  

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, to reduce protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of NLS and NoLS integration into the basic domain of HIV-1 Tat ( 49 RKKRRQRRR 57 ), and found that these two supplementary functions (i.e., function of NLS and NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


Sign in / Sign up

Export Citation Format

Share Document