scholarly journals An Approach to Solutions of Fractal and Fractional Time Derivative Fokker-Planck Equation

Authorea ◽  
2020 ◽  
Author(s):  
Hamdy Abdel Gawad
Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 651 ◽  
Author(s):  
Piotr Weber ◽  
Piotr Bełdowski ◽  
Martin Bier ◽  
Adam Gadomski

We study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k B T , which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar in its structure. The subdiffusion that emerges in such a high-dimensional, fractal environment leads to a Fokker–Planck Equation with a fractional time derivative. We set up such a so-called fractional Fokker–Planck Equation for the aggregation into granules. From that Fokker–Planck Equation, we derive an expression for the entropy production of a growing granule.


1989 ◽  
Vol 9 (1) ◽  
pp. 109-120
Author(s):  
G. Liao ◽  
A.F. Lawrence ◽  
A.T. Abawi

2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


Sign in / Sign up

Export Citation Format

Share Document