scholarly journals Long time behavior of a wave equation with time-varying delay and acoustic boundary conditions

Author(s):  
Jong Yeoul Park ◽  
Jae Jeong
2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


2019 ◽  
Vol 17 (1) ◽  
pp. 89-103
Author(s):  
Qiaozhen Ma ◽  
Jing Wang ◽  
Tingting Liu

Abstract In this article, we consider the long-time behavior of solutions for the wave equation with nonlinear damping and linear memory. Within the theory of process on time-dependent spaces, we verify the process is asymptotically compact by using the contractive functions method, and then obtain the existence of the time-dependent attractor in $\begin{array}{} H^{1}_0({\it\Omega})\times L^{2}({\it\Omega})\times L^{2}_{\mu}(\mathbb{R}^{+};H^{1}_0({\it\Omega})) \end{array}$.


Sign in / Sign up

Export Citation Format

Share Document