scholarly journals An Algorithm for Optimal Testing in Co-segregation Analysis

Author(s):  
Ronald Buie ◽  
John Rañola ◽  
Annie Chen ◽  
Brian Shirts

Clinical genetic sequencing tests often identify variants of uncertain significance (VUS). One source of data that can help classify the pothogenicity of variants is familial cosegregation analysis. Identifying and genotyping relatives for cosegregation analysis can be time consuming and costly. We propose an algorithm that describes a single measure of expected variant information gain from genotyping a single additional relative in a family. Then we explore the performance of this algorithm by comparing actual recruitment strategies used in 35 families who had pursued cosegregation analysis with synthetic pedigrees of possible testing outcomes if the families had pursued an optimized testing strategy instead. For each actual and synthetic pedigree, we calculated the likelihood ratio of pathogenicity as each successive test was added to the pedigree. We analyzed the differences in cosegregation likelihood ratio over time resulting from actual versus optimized testing approaches. Employing the testing strategy indicated by the algorithm would have led to maximal information more rapidly in 30 of the 35 pedigrees (86%). Many clinical and research laboratories are involved in targeted cosegregation analysis. The algorithm we present can facilitate a data driven approach to optimal relative recruitment and genotyping for cosegregation analysis and more efficient variant classification.

2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Author(s):  
Ernest Pusateri ◽  
Bharat Ram Ambati ◽  
Elizabeth Brooks ◽  
Ondrej Platek ◽  
Donald McAllaster ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiangxu Li ◽  
Jiaxi Liu ◽  
Stanley A. Baronett ◽  
Mingfeng Liu ◽  
Lei Wang ◽  
...  

AbstractThe discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual correlations. Among the phononic systems, we have predicted the hourglass nodal net TPs in TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist in many materials (such as ScZn). Their potential applications and experimental detections have been discussed. This work substantially increases the amount of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.


Sign in / Sign up

Export Citation Format

Share Document