scholarly journals CHANGE DETECTION SOFTWARE USING SELF-ORGANIZING FEATURE MAPS

2012 ◽  
Vol 30 (4) ◽  
pp. 505
Author(s):  
Nilton Correia da Silva ◽  
Osmar Abílio de Carvalho Júnior ◽  
Antonio Nuno de Castro Santa Rosa ◽  
Renato Fontes Guimarães ◽  
Roberto Arnaldo Trancoso Gomes

Os mapas auto-organizáveis (SOFM) consistem em um tipo de rede neural artificial que permite a conversão de dados de alta dimensão, complexos e não lineares, em simples relações geométricas com baixa dimensionalidade. Este método também pode ser utilizado para a classificação de imagens de sensoriamento remoto, pois permite a compressão de dados de alta dimensão preservando as relações topológicas dos dados primários. Este trabalho objetiva desenvolver uma metodologia eficaz para a utilização de mapas auto-organizáveis na detecção de mudanças. No presente estudo o SOFM é utilizado para a classificação não supervisionada de dados de sensoriamento remoto, considerando os seguintes atributos: espaciais (x, y), espectrais e temporais. O método é empregado na região oeste da Bahia, que teve recentemente um aumento significativo em monoculturas. Testes foram realizados com os parâmetros do SOFM com o objetivo de refinar o mapa de detecção demudanças. O SOFM possibilita uma melhor seleção de células e dos correspondentes vetores de peso, que mostram o processo de ordenação e agrupamento hierárquicodos dados. Esta informação é essencial para identificar mudanças ao longo do tempo. Um programa em linguagem C ++ do método proposto foi desenvolvido. ABSTRACT. Self-organizing feature maps (SOFM) consist of a type of artificial neural network that allows the conversion from high-dimensional data into simple geometric relationships with low-dimensionality. This method can also be used for classification of remote sensing images because it allows the compression of high dimensional data while preserving the most important topological and metric relationships of the primary data. This paper aims to develop an effective methodology forusing self-organizing maps in change detection. In this study, SOFM is used for unsupervised classification of remote sensing data, considering the following attributes: spatial (x and y), spectral and temporal. The method is tested and simulated in the western region of Bahia that has observed a significant increase in mechanized agriculture. Tests were performed with the SOFM parameters for the purpose of fine tuning a change detection map. The SOFM provides the best selection of cell and corresponding adjustment of weight vectors, which show the process of ordering and hierarchical clustering of the data. This information is essential to identify changes over time. All algorithms were implemented in C++ language.Keywords: unsupervised classification; land cover; multitemporal analysis; remote sensing

2014 ◽  
Vol 41 (3) ◽  
pp. 341-355 ◽  
Author(s):  
Yi Xiao ◽  
Rui-Bin Feng ◽  
Zi-Fa Han ◽  
Chi-Sing Leung

2012 ◽  
Vol 7 (47) ◽  
pp. 6357-6362 ◽  
Author(s):  
Pilarski Krzysztof ◽  
Boniecki Piotr ◽  
Slosarz Piotr ◽  
Dach Jacek ◽  
Boniecka Piekarska Hanna ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5813
Author(s):  
Muhammad Umair ◽  
Muhammad Shahbaz Khan ◽  
Fawad Ahmed ◽  
Fatmah Baothman ◽  
Fehaid Alqahtani ◽  
...  

The COVID-19 outbreak began in December 2019 and has dreadfully affected our lives since then. More than three million lives have been engulfed by this newest member of the corona virus family. With the emergence of continuously mutating variants of this virus, it is still indispensable to successfully diagnose the virus at early stages. Although the primary technique for the diagnosis is the PCR test, the non-contact methods utilizing the chest radiographs and CT scans are always preferred. Artificial intelligence, in this regard, plays an essential role in the early and accurate detection of COVID-19 using pulmonary images. In this research, a transfer learning technique with fine tuning was utilized for the detection and classification of COVID-19. Four pre-trained models i.e., VGG16, DenseNet-121, ResNet-50, and MobileNet were used. The aforementioned deep neural networks were trained using the dataset (available on Kaggle) of 7232 (COVID-19 and normal) chest X-ray images. An indigenous dataset of 450 chest X-ray images of Pakistani patients was collected and used for testing and prediction purposes. Various important parameters, e.g., recall, specificity, F1-score, precision, loss graphs, and confusion matrices were calculated to validate the accuracy of the models. The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet are 83.27%, 92.48%, 96.49%, and 96.48%, respectively. In order to display feature maps that depict the decomposition process of an input image into various filters, a visualization of the intermediate activations is performed. Finally, the Grad-CAM technique was applied to create class-specific heatmap images in order to highlight the features extracted in the X-ray images. Various optimizers were used for error minimization purposes. DenseNet-121 outperformed the other three models in terms of both accuracy and prediction.


Sign in / Sign up

Export Citation Format

Share Document