scholarly journals Optimizing Electricity Load and Cost for Demand Side Management in Smart Grid

Author(s):  
Ayesha Afzaal ◽  
Mohsin Nazir

This paper proposes a mechanism for OELC (Optimizing Electricity Load and Cost) for smart grid. The load of every smart home is predicted one-hour prior to their actual usage. To fulfill PL (Predicted Load) of each consumer, multiple resources of electricity are considered, including RE (Renewable Energy) resources. Furthermore, cost to get PL from multiple resources is calculated. In proposed model 3-4 smart homes are grouped in the form of clusters. To reduce the amount of electricity bills, system also allows privileges to share electricity between adjacent smart homes within a cluster. To validate the OELC mechanism, extensive numerical simulations are conducted which shows a significant reduction in electricity load and cost for electricity consumers. In future, to enhance the functionality of OELC, security from cyber-attacks can be considered

Author(s):  
Ayesha Afzaal ◽  
Mohsin Nazir

This paper proposes a mechanism for OELC (Optimizing Electricity Load and Cost) for smart grid. The load of every smart home is predicted one-hour prior to their actual usage. To fulfill PL (Predicted Load) of each consumer, multiple resources of electricity are considered, including RE (Renewable Energy) resources. Furthermore, cost to get PL from multiple resources is calculated. In proposed model 3-4 smart homes are grouped in the form of clusters. To reduce the amount of electricity bills, system also allows privileges to share electricity between adjacent smart homes within a cluster. To validate the OELC mechanism, extensive numerical simulations are conducted which shows a significant reduction in electricity load and cost for electricity consumers. In future, to enhance the functionality of OELC, security from cyber-attacks can be considered


Author(s):  
Geetha Kamurthy ◽  
Sreenivasappa Bhupasandra Veeranna

The extensive use of fossil fuel is destroying the balance of nature that could lead to many problems in the forthcoming era. Renewable energy resources are a ray of hope to avoid possible destruction. Smart grid and distributed power generation systems are now mainly built with the help of renewable energy resources. The integration of renewable energy production system with the smart grid and distributed power generation is facing many challenges that include addressing the issue of isolation and power quality. This paper presents a new approach to address the aforementioned issues by proposing a hybrid bypass technique concept to improve the overall performance of the grid-tied inverter in solar power generation. The topology with the proposed technique is presented using traditional H5, oH5 and H6 inverter. Comparison of topologies with literature is carried out to check the feasibility of the method proposed. It is found that the leakage current of all the proposed inverters is 9 mA and total harmonic distortion is almost about 2%. The proposed topology has good efficiency, common mode and differential mode characteristics.


2020 ◽  
Author(s):  
Sujie Shao ◽  
Lei Wu ◽  
Qinghang Zhang ◽  
Neng Zhang ◽  
Kaixuan Wang

Abstract To take full advantage of the flexibility of access and disconnection from smart grid, organizing distributed renewable energy resources in form of microgrid becomes one solution of energy replenishment in smart grid. A large amount of accurate and comprehensive information data are needed to be monitored by a variety of different types of sensors to guarantee the effective operation of this kind of microgrid. Energy consumption of microgrid monitoring WSN consequently becomes an issue. This paper presents a novel lifetime prolongation algorithm based on cooperative coverage of different types of sensors. Firstly, according to the requirements of monitoring business, the construction of cooperative coverage sets and connected monitoring WSN are discussed. Secondly, energy consumption is analyzed based on cooperative coverage. Finally, the cooperative coverage based lifetime prolongation algorithm (CC-LP) is proposed. Both the energy consumption balancing inside the cooperative coverage set and the switching scheduling between cooperative coverage sets are discussed. Then we draw into an improved ant colony optimization algorithm to calculate the switching scheduling. Simulation results show that this novel algorithm can effectively prolong the lifetime of monitoring WSN, especially in the monitoring area with a large deployed density of different types of sensors.


Author(s):  
Izni Nadhirah Sam’on ◽  
Zuhaila Mat Yasin ◽  
Zuhaina Zakaria

<p>This paper proposed the integration of solar energy resources into the conventional unit commitment. The growing concern about the depletion of fossil fuels increased the awareness on the importance of renewable energy resources, as an alternative energy resources in unit commitment operation. However, the present renewable energy resources is intermitted due to unpredicted photovoltaic output. Therefore, Ant Lion Optimizer (ALO) is proposed to solve unit commitment problem in smart grid system with consideration of uncertainties .ALO is inspired by the hunting appliance of ant lions in natural surroundings. A 10-unit system with the constraints, such as power balance, spinning reserve, generation limit, minimum up and down time constraints are considered to prove the effectiveness of the proposed method. The performance of proposed algorithm are compared with the performance of Dynamic Programming (DP). The results show that the integration of solar energy resources in unit<em> commitment scheduling can improve the total operating cost significantly. </em></p>


2014 ◽  
Vol 573 ◽  
pp. 346-351
Author(s):  
G.S. Satheesh Kumar ◽  
Chinnadurai Nagarajan ◽  
M. Lizzy Nesa Bagyam

A Recent concept of distribution infrastructure plays a vital role in the efficient utilization of energy. To avoid global warming and greenhouse gas emission, carbon based power plant should be replaced with distributed renewable energy (DRE) such as wind, solar etc. Renewable energy resources can be integrated to grid by intelligent electronic devices (IED). This paper deals with the novel automation architecture that supports power distribution systems to avoid power blackout and also it briefs the major requirement of the smart grid distribution system needed for a competitive world. International standard IEC 61850 and IEC 61499 provides a solution for substation automation through intelligent logical nodes (ILNs) which enhances interoperability and configurability.Later an open source platform is used for enhancing the communication that automatically generates the data model and communication nodes for intelligent electronic devices.However for future requirements in smart grid, the addition of new functions as well as the adaptation of function for IEDs is necessary. A concept of reconfigurable software architecture is introduced for integrating distributed and renewable energy resources. Such interfaces and services provide adaptation of the functional structure and contribute efficient Smart Grid system. This survey summarizes the communication infrastructure of smart energy system.


Sign in / Sign up

Export Citation Format

Share Document