scholarly journals Unusual Behavior by Bison, Bison bison, Toward Elk, Cervus elaphus, and Wolves, Canis lupus

2004 ◽  
Vol 118 (1) ◽  
pp. 115 ◽  
Author(s):  
L. David Mech ◽  
Rick T. McIntyre ◽  
Douglas W. Smith

Incidents are described of Bison (Bison bison) in Yellowstone National Park mauling and possibly killing a young Elk (Cervus elaphus) calf, chasing wolves (Canis lupus) off Elk they had just killed or were killing, and keeping the wolves away for extended periods. During one of the latter cases, the Bison knocked a wolf-wounded Elk down. Bison were also seen approaching wolves that were resting and sleeping, rousting them, following them to new resting places and repeating this behavior. These behaviors might represent some type of generalized hyper-defensiveness that functions as an anti-predator strategy.

2001 ◽  
Vol 79 (8) ◽  
pp. 1401-1409 ◽  
Author(s):  
John W Laundré ◽  
Lucina Hernández ◽  
Kelly B Altendorf

The elk or wapiti (Cervus elaphus) and bison (Bison bison) of Yellowstone National Park have lived in an environment free of wolves (Canis lupus) for the last 50 years. In the winter of 1994-1995, wolves were reintroduced into parts of Yellowstone National Park. Foraging theory predicts that elk and bison would respond to this threat by increasing their vigilance levels. We tested this prediction by comparing vigilance levels of elk and bison in areas with wolves with those of elk still in "wolf-free" zones of the Park. Male elk and bison showed no response to the reintroduction of wolves, maintaining the lowest levels of vigilance throughout the study ([Formula: see text]12 and 7% of the time was spent vigilant, respectively). Female elk and bison showed significantly higher vigilance levels in areas with wolves than in areas without wolves. The highest vigilance level (47.5 ± 4.1%; mean ± SE) was seen by the second year for female elk with calves in the areas with wolves and was maintained during the subsequent 3 years of the study. As wolves expanded into non-wolf areas, female elk with and without calves in these areas gradually increased their vigilance levels from initially 20.1 ± 3.5 and 11.5 ± 0.9% to 43.0 ± 5.9 and 30.5 ± 2.8% by the fifth year of the study, respectively. We discuss the possible reasons for the differences seen among the social groups. We suggest that these behavioural responses to the presence of wolves may have more far-reaching consequences for elk and bison ecology than the actual killing of individuals by wolves.


1999 ◽  
Vol 77 (3) ◽  
pp. 499-503 ◽  
Author(s):  
Eric M Gese

Wild ungulates have evolved a variety of antipredator strategies to deter or escape predation by carnivores. Among wild canids, the dominant pair of a pack often initiates attacks upon prey. Previous observations in Yellowstone National Park, Wyoming, showed that the alpha pair in a coyote (Canis latrans) pack most often leads attacks on ungulates during winter. We were interested in determining whether ungulates can distinguish (perhaps by body size or posture) which members of a coyote pack are the alpha individuals, and whether they initiate and direct aggressive behavior towards those members of the pack that pose the greatest threat of predation to themselves and (or) their offspring. During 2507 h of behavioral observations on 54 coyotes between January 1991 and June 1993, we observed 51 interactions between coyotes and adult elk (Cervus elaphus), bison (Bison bison), and pronghorn antelope (Antilocapra americana) in Yellowstone National Park. The interactions analyzed here are those in which the ungulate appeared to initiate aggressive behavior towards the coyote(s) and were not a response to an attack by the predators. We found that aggression by ungulates towards coyotes was highest during the summer months, when calves and fawns were present; female ungulates were more frequently aggressive than males. The frequency of aggression of adult ungulates towards small and large groups of coyotes was equal to the frequency of occurrence of these groups. Ungulates directed aggressive behavior more frequently towards alpha coyotes and were less aggressive towards beta coyotes and pups. Large ungulates, particularly elk and bison, appeared to perceive that alpha coyotes posed a greater threat to themselves and their offspring. The smaller ungulate, the pronghorn antelope, directed aggressive behavior equally towards all coyotes. Adult ungulates were probably responding to the larger body size of the alpha coyotes and the tendency of alpha coyotes to travel at the front of the pack.


Author(s):  
Monica Turner ◽  
Yegang Wu ◽  
William Romme ◽  
Linda Wallace

The scale of the 1988 fires in Yellowstone National Park (YNP) raised numerous questions for the management of natural areas subject to large, infrequent disturbances. An important management issue in YNP involves the interaction of large-scale fire with the large assemblage of native ungulates and vegetation dynamics in the landscape. In this 2-year research project, we are using landscape modeling and field studies to address basic questions about the effects of fire scale and heterogeneity on (1) resource utilization and survival of free-ranging elk (Cervus elaphus) and bison (Bison bison) and (2) the production and regeneration of preferred forage grasses and aspen in northern YNP. We are testing a series of eight hypotheses within the framework of two basic questions. First, we ask whether there are thresholds in fire size that interact with winter severity and ungulate density to determine ungulate resource use and survival on the winter range in northern YNP. This question focuses on the effects of fire size, regardless of the spatial pattern of burning. Second we ask, if large fires occur, does the spatial distribution of burned areas (and hence of higher quality forage) influence ungulate resource use during winters subsequent to the first post-fire year. In this question, we are addressing the effects of spatial pattern on herbivory. We focus on elk and bison because these are by far the most numerous ungulates in the area (Houston 1982), and we have chosen to examine winter grazing and browsing for several reasons. Winter range conditions are the primary determinant of ungulate survival and reproduction in Yellowstone, and winter utilization of the vegetation by ungulates appears to be intense in some areas. Ungulates make distinct foraging choices in the winter as in the rest of the year, and burn patterns may influence those choices in ways that we represent as hypotheses described later. In addition, the activities of animals can be readily monitored in the winter, and the exact locations of feeding and bedding sites can be determined. Travel routes are easily monitored, and the ability to sight animals is high; therefore, group locations and sizes can be readily determined. This research complements ongoing studies in YNP by expanding the spatial scale at which plant-herbivore dynamics are considered and by explicitly addressing the effects of spatial heterogeneity. Our research will produce a spatially explicit simulation model of the 78,000 ha winter range that predicts plant and ungulate dynamics under varying fire sizes, fire patterns, winter weather scenarios, and ungulate densities. The model and field studies will allow quantitative comparisons of the effects of large and small fires on ungulate survival and will thereby permit the simulation of the effects of alternative fire management scenarios.


Author(s):  
Monica Turner ◽  
Yegang Wu ◽  
Scott Pearson ◽  
William Romme ◽  
Linda Wallace

The scale of the 1988 fires in Yellowstone National Park (YNP) raised numerous questions for the management of natural areas subject to large, infrequent disturbances. An important management issue in YNP involves the interaction of large-scale fire with the large assemblage of native ungulates and vegetation dynamics in the landscape. We used landscape modeling and field studies to address basic questions about the effects of fire scale and heterogeneity on resource utilization and survival of free-ranging elk (Cervus elaphus) and bison (Bison bison), and the production and regeneration of preferred forage grasses and aspen in northern Yellowstone Park. More specifically, we asked (1) how fire size interacts with winter severity to control ungulate feeding behavior and survival, both in the initial postfire winter, when fire reduces forage, and in later postfire winters, when fire augments forage; (2) how fire pattern (e.g., clumped vs. dispersed burn sites) modifies the effects of fire size; (3) which environmental factors, including fire, influence selection of feeding areas by wintering ungulates at a variety of scales, from a single feeding station to the entire northern winter range; and (4) how the size and spatial pattern of burning influence regeneration of aspen (Populus tremuloides), a preferred and heavily browsed species in YNP. We focus on elk and bison because these are by far the most numerous ungulates in the area (Houston 1982), and we have chosen to examine winter grazing and browsing for several reasons. Winter range conditions are the primary determinant of ungulate survival and reproduction in Yellowstone, and winter utilization of the vegetation by ungulates appears to be intense in some areas. Ungulates make distinct foraging choices in the winter as in the rest of the year, and burn patterns may influence those choices in ways that we represent as hypotheses described later. In addition, the activities of animals can be readily monitored in the winter, and the exact locations of feeding and bedding sites can be determined. Travel routes are easily monitored, and the ability to sight animals is high; therefore, group locations and sizes can be readily determined. This research complements ongoing studies in Yellowstone by expanding the spatial scale at which plant-herbivore dynamics are considered and by explicitly addressing the effects of spatial heterogeneity. We produced a spatially explicit simulation model of the winter range that predicts plant and ungulate dynamics under varying fire sizes, fire patterns, winter weather scenarios. The model and field studies will generate quantitative comparisons of the effects of large and small fires on ungulate survival and will thereby permit the simulation of the effects of alternative fire management scenarios.


2018 ◽  
Vol 96 (9) ◽  
pp. 1032-1042 ◽  
Author(s):  
H.W. Martin ◽  
L.D. Mech ◽  
J. Fieberg ◽  
M.C. Metz ◽  
D.R. MacNulty ◽  
...  

Despite encounter rates being a key component of kill rate, few studies of large carnivore predation have quantified encounter rates with prey, the factors that influence them, and the relationship between encounter rate and kill rate. The study’s primary motivation was to determine the relationship between prey density and encounter rate in understanding the mechanism behind the functional response. Elk (Cervus elaphus Linnaeus, 1758) population decline and variable weather in northern Yellowstone National Park provided an opportunity to examine how these factors influenced wolf (Canis lupus Linnaeus, 1758) encounter rates with elk. We explored how factors associated with wolf kill rate and encounter rate in other systems (season, elk density, elk group density, average elk group size, snow depth, wolf pack size, and territory size) influenced wolf–elk encounter rate in Yellowstone National Park. Elk density was the only factor significantly correlated with wolf–elk encounter rate, and we found a nonlinear density-dependent relationship that may be a mechanism for a functional response in this system. Encounter rate was correlated with number of elk killed during early winter but not late winter. Weak effects of snow depth and elk group size on encounter rate suggest that these factors influence kill rate via hunting success because kill rate is the product of hunting success and encounter rate.


2015 ◽  
Vol 93 (6) ◽  
pp. 499-502 ◽  
Author(s):  
L. David Mech ◽  
Shannon Barber-Meyer

The Northern Range (NR) of Yellowstone National Park (YNP) hosts a higher prey biomass density in the form of elk (Cervus elaphus L., 1758) than any other system of gray wolves (Canis lupus L., 1758) and prey reported. Therefore, it is important to determine whether that wolf–prey system fits a long-standing model relating wolf density to prey biomass. Using data from 2005 to 2012 after elk population fluctuations dampened 10 years subsequent to wolf reintroduction, we found that NR prey biomass predicted wolf density. This finding and the trajectory of the regression extend the validity of the model to prey densities 19% higher than previous data and suggest that the model would apply to wolf–prey systems of even higher prey biomass.


2009 ◽  
Vol 123 (3) ◽  
pp. 260 ◽  
Author(s):  
J. W. Sheldon ◽  
Gregory Reed ◽  
A. Cheyenne Burnett ◽  
Kevin Li ◽  
Robert L. Crabtree

We observed a single adult male Coyote (Canis latrans) kill a Bison (Bison bison) calf in Yellowstone National Park. The predation is, to our knowledge, the only direct and complete observation of a lone Coyote capturing and killing a Bison calf. The bison calf had unsuccessfully attempted to ford a river with a group and subsequently become stranded alone in the territory of a six-year-old alpha male Coyote.


2003 ◽  
Vol 81 (6) ◽  
pp. 985-993 ◽  
Author(s):  
T Adam Switalski

Coyotes (Canis latrans) in Yellowstone National Park (YNP) have lived in the absence of wolves (Canis lupus) for over 60 years. I examined whether wolf reintroduction in 1995 and 1996 in YNP influenced coyote vigilance and foraging ecology. From December 1997 to July 2000, my co-workers and I collected 1708 h of coyote activity budgets. Once wolves became established in the Park, they once again provided a continuous source of carrion in the Lamar Valley and we found that coyotes began feeding on carcasses throughout the year. Although we documented that wolves killed coyotes, it also became clear that surviving coyotes quickly adjusted their behaviors when wolves were present. When coyotes were near wolves or in areas of high wolf use, they fed on carcasses much more; however, they increased the amount of time spent in vigilance activities and decreased rest. There appears to be a trade-off in which wolf kills provide a quick source of food that is energetically advantageous to coyotes; however, attendant costs included increased vigilance, decreased rest, and a higher risk of being killed. Changes in the behavior of coyotes in response to the reintroduction of this large carnivore may ultimately have wide-ranging cascading effects throughout the ecosystem.


2016 ◽  
Vol 46 (4) ◽  
pp. 548-556 ◽  
Author(s):  
Robert L. Beschta ◽  
Luke E. Painter ◽  
Taal Levi ◽  
William J. Ripple

We report long-term patterns of quaking aspen (Populus tremuloides Michx.) recruitment for five ungulate exclosures in the northern ungulate winter range of Yellowstone National Park. Aspen recruitment was low (<3 aspen·ha−1·year−1) in the mid-1900s prior to exclosure construction due to herbivory by Rocky Mountain elk (Cervus elaphus Linnaeus, 1758) but increased more than 60-fold within 25 years after exclosure construction despite a drying climatic trend since 1940. Results support the hypothesis that long-term aspen decline in Yellowstone’s northern range during the latter half of the 20th century was caused by high levels of ungulate herbivory and not a drying climate. Gray wolves (Canis lupus Linnaeus, 1758) were reintroduced during 1995–1996. For the period 1995–2012, we summarized annual predator–prey ratios, ungulate biomass, and drought severity. The average density of young aspen increased from 4350 aspen·ha−1 in 1997–1998 to 8960 aspen·ha−1 in 2012; during the same time period, those >1 m in height increased over 30-fold (from 105 to 3194 aspen·ha−1). Increased heights of young aspen occurred primarily from 2007 to 2012, a period with relatively high predator–prey ratios, declining elk numbers, and decreasing browsing rates. Consistent with a re-established trophic cascade, aspen stands in Yellowstone’s northern range have increasingly begun to recover.


Sign in / Sign up

Export Citation Format

Share Document