population fluctuations
Recently Published Documents


TOTAL DOCUMENTS

612
(FIVE YEARS 97)

H-INDEX

50
(FIVE YEARS 3)

2022 ◽  
Vol 354 ◽  
pp. 00065
Author(s):  
Sorin Mihăilescu ◽  
Gabriel Praporgescu

Sustainable public transport requires finding a balance between economic and social objectives, ensuring the need for mobility without damaging environmental and health factors. At the level of the Petroșani Basin, the aim is to ensure the mobility of passengers as quickly as possible from one city to another (from east to west - Petrila, Petroșani, Aninoasa, Vulcan, Lupeni, Uricani) or from one part of the city to another, as the case may be. The study of population fluctuations by hours, on working or non-working days, per season allows the realization of a public transport that ensures the movement of people as quickly and safely as possible. The purpose of this paper is to study the way in which public transport is carried out in the Petroșani Basin, the means of transport used and the possibilities to improve this activity. In the context of sustainable mobility, the paper includes necessary aspects (transport demand, influencing factors, infrastructure) in order to conclude on the future of public transport in the Petroșani Basin.


2021 ◽  
Vol 5 (2) ◽  
pp. 207
Author(s):  
Sri Wahyuni ◽  
Willybrordus Lanamana ◽  
Kristono Yohanes Fowo ◽  
Lourentius Dominikus Gadi Djou ◽  
Yohanes Pande

<em><strong>Training on Agro Eco-System Analysis for Cassava Farmers in Plant Pest Organism Management Techniques</strong>. </em>Pest population fluctuations in cassava plants tend to increase and spread rapidly in drought fields and a monoculture cropping pattern with close spacing therefore the presence of pests planted is highly dependent on agro-ecosystem conditions. Therefore ecological-based pest control is very necessary.  To maintain the stability of the plant ecosystem, basic skills are needed in conducting agroecosystem analysis (AESA). Based on the analysis results obtained recommendations for appropriate ecosystem management for each growing season and facilitate farmers in determining good cultivation techniques regarding pest control, cropping patterns, soil and water conservation as well as natural enemies that are appropriate for their plants. AESA activities are carried out so that farmers understand and are skilled in managing their cassava plantations because Randotonda Village is a producer of "Nuabosi" cassava which is known as a regional superior product. The activity is carried out in a participatory manner by directly involving the participating farmers as observers, fact seekers and decision-makers for the management of their agroecosystems through discussion and manifesting current real conditions with the hope that in the future they can manage their cropping agroecosystems properly. The highest increase in farmer understanding occurred in natural enemy components of 91.67% while the average increase in farmer understanding for all agro-ecosystem components was 57.14%. All participants were able to perform AESA very well which was indicated by the ability of farmers to make recommendations for managing cassava agroecosystems for the next planting season.


Author(s):  
Robert Desharnais ◽  
Alan Muchlinski ◽  
Janel Ortiz ◽  
Ruby Alvidrez ◽  
Brian Gatza

1. Competition from invasive species is an increasing threat to biodiversity. In Southern California, the western gray squirrel (Sciurus griseus, WGS) is facing increasing competition from the fox squirrel (Sciurus niger, FS), an invasive congener. 2. We used spectral methods to analyze 140 consecutive monthly censuses of WGS and FS within a 11.3 ha section of the California Botanic Garden. Variation in the numbers for both species and their synchrony was distributed across long timescales (> 15 months). 3. After filtering out annual changes, concurrent mean monthly temperatures from nearby Ontario Airport (ONT) yielded a spectrum with a large semiannual peak and significant spectral power at long timescales (> 30 months). Squirrel-temperature cospectra showed significant negative covariation at long timescales (> 35 months) for WGS and smaller significant negative peaks at 6 months for both species. 4. Simulations from a Lotka-Volterra model of two competing species indicates that the risk of extinction for the weaker competitor increases quickly as environmental noise shifts from short to long timescales. 5. We analyzed the timescales of fluctuations in detrended mean annual temperatures for the time period 1915-2014 from 1218 locations across the continental USA. In the last two decades, significant shifts from short timescales to long timescales have occurred, changing from less than 3 years to 4-6 years. 6. Our results indicate that (i) population fluctuations in co-occurring native and invasive tree squirrels are synchronous, occur over long timescales, and may be driven by fluctuations in environmental conditions; (ii) long timescale population fluctuations increase the risk of extinction in competing species, especially for the inferior competitor; and (iii) the timescales of interannual environmental fluctuations may be increasing from recent historical values. These results have broad implications for the impact of climate change on the maintenance of biodiversity.


Author(s):  
Robert Desharnais ◽  
Alan Muchlinski ◽  
Janel Ortiz ◽  
Ruby Alvidrez ◽  
Brian Gatza

1. Competition from invasive species is an increasing threat to biodiversity. In Southern California, the western gray squirrel (Sciurus griseus, WGS) is facing increasing competition from the fox squirrel (Sciurus niger, FS), an invasive congener. 2. We used spectral methods to analyze 140 consecutive monthly censuses of WGS and FS within a 11.3 ha section of the California Botanic Garden. Variation in the numbers for both species and their synchrony was distributed across long timescales (> 15 months). 3. After filtering out annual changes, concurrent mean monthly temperatures from nearby Ontario Airport (ONT) yielded a spectrum with a large semiannual peak and significant spectral power at long timescales (> 30 months). Squirrel-temperature cospectra showed significant negative covariation at long timescales (> 35 months) for WGS and smaller significant negative peaks at 6 months for both species. 4. Simulations from a Lotka-Volterra model of two competing species indicates that the risk of extinction for the weaker competitor increases quickly as environmental noise shifts from short to long timescales. 5. We analyzed the timescales of fluctuations in detrended mean annual temperatures for the time period 1915-2014 from 1218 locations across the continental USA. In the last two decades, significant shifts from short timescales to long timescales have occurred, changing from less than 3 years to 4-6 years. 6. Our results indicate that (i) population fluctuations in co-occurring native and invasive tree squirrels are synchronous, occur over long timescales, and may be driven by fluctuations in environmental conditions; (ii) long timescale population fluctuations increase the risk of extinction in competing species, especially for the inferior competitor; and (iii) the timescales of interannual environmental fluctuations may be increasing from recent historical values. These results have broad implications for the impact of climate change on the maintenance of biodiversity.


Author(s):  
Miguel Correia

AbstractAfter seahorse population fluctuations were revealed in previous studies, probably due to changes in their natural habitat, this study sought to determine the current status of the populations of the two existing seahorse species in the Ria Formosa lagoon, by revisiting previously surveyed sites, while assessing the main drivers for detected changes. Hippocampus guttulatus densities decreased significantly between 2002 and 2008, followed by a significant increase between 2008 and 2012 and a significant decrease between 2012 and 2018. There were no significant differences in H. guttulatus populations between the 2002 and 2012 surveys, and between 2008 and 2018. As for Hippocampus hippocampus, there were no significant differences comparing densities from all the different dates. Among the different variables tested in this study, holdfast coverage seems to have played a crucial role in seahorse decline. It is important to further assess the impact on seahorse populations of two recently reported events, the illegal fishing of seahorses and the expansion of Caulerpa prolifera algae in the Ria Formosa lagoon, South Portugal. Considering the existent threats and the probable causes behind the recent seahorse abundance decline, seahorses’ low densities make them even more susceptible to local extirpation due to continuous threats, which emphasizes the dire urgency to put in place mitigative actions to contribute to the conservation of these iconic species.


Author(s):  
Bart Peeters ◽  
Vidar Grøtan ◽  
Marlène Gamelon ◽  
Vebjørn Veiberg ◽  
Aline Magdalena Lee ◽  
...  

Harvesting can magnify the destabilizing effects of environmental perturbations on population dynamics and, thereby, increase extinction risk. However, population-dynamic theory predicts that impacts of harvesting depend on the type and strength of density-dependent regulation. Here, we used logistic population growth models and an empirical reindeer case study to show that low to moderate harvesting can actually buffer populations against environmental perturbations. This occurs because of density-dependent environmental stochasticity, where negative environmental impacts on vital rates are amplified at high population density due to intraspecific resource competition. Simulations from our population models show that even low levels of harvesting may prevent overabundance, thereby dampening population fluctuations and reducing the risk of population collapse and quasi-extinction following environmental perturbations. Thus, depending on the species’ life history and the strength of density-dependent environmental drivers, low to moderate harvesting can improve population resistance to increased climate variability and extreme weather expected under global warming.


2021 ◽  
Author(s):  
◽  
Enrique Arturo Mundaca

<p><b>The importance of habitat structure has been historically discussed in terms of its influence on diversity, distribution and abundance of living organisms. In this regard, the population fluctuations of any particular species, particularly outbreaking insect species, can be expected to be profoundly influenced by the structure of the habitat. A set of ecological hypotheses, such as, the associational resistance, plant decoy, habitat heterogeneity and resource concentration have implicitly included the structure of the habitat determined by the structure (size, density, physical location) of the host plant and other surrounding plant species. Moreover, type, quality and availability of resources, in addition to the presence of other interacting organisms, e.g. competitors, predators and parasites, have also been considered determining factors in the population fluctuation of outbreaking species. The aim of this thesis is to contribute to the understanding of how the outbreaks of the kowhai moth, U. polygonalis maorialis, relate to the physical structure of the habitat, the availability of resources, specific host plants and to natural enemies.</b></p> <p>In the first experimental chapter of my thesis I studied the fluctuations of the U. polygonalis maorialis larvae and their impacts on the defoliation levels of Sophora spp. plants. I carried out a survey in urban and suburban areas of Wellington city. I examined levels of defoliation of the host plants and population fluctuations in terms of a set of biotic and abiotic variables. These variables were selected in order to cover a range of measures of habitat structure, resource availability and invertebrate community. I modelled such responses to find which variables better explained the observed defoliation and larval population fluctuations. The best fitted model showed that levels of observed defoliation were explained by the structure of the vegetation surrounding the main host plant (vertical and horizontal) and the species of host plant. Population fluctuations of the kowhai moth were explained by the following predicting variables: density of natural enemies, structure of the vegetation surrounding the main host plant (vertical and horizontal), host plant size, level of habitat disturbance, type of habitat (urban/suburban) and the Sophora spp.</p> <p>In my second experimental chapter, I focused on the importance of availability of resources to explain observed densities of U. polygonalis maorialis and phytophagous insects. In my observational experiment I tested the resource concentration hypothesis and the natural enemies hypothesis, by studying the fluctuations of U. polygonalis maorialis larvae on individuals of Sophora microphylla plants located in gardens across Wellington city. Larval densities were found to be higher on smaller plants than large plants, whereas natural enemies did not show specific responses to plant size. In my manipulative experiment I originally aimed for the establishment of U. polygonalis maorialis in the experimental plots. Unfortunately, these were not colonised by U. polygonalis maorialis, instead I studied phytophagous insects that colonised the plots. I found no differences among the S. microphylla treatments for the levels of establishment of phytophagous invertebrates. On the contrary, the amount of nil records was high and there was an overall high variability among treatments and low rate of establishment throughout the sampling season. Nevertheless, natural enemies were found to occur more often at higher densities in plots with lower plant density in only two specific dates.</p> <p>Uresiphita polygonalis maorialis is the main defoliator of Sophora spp in New Zealand. In this context I studied the feeding and oviposition preferences of the moth for the three most commonly found species of Sophora plants in Wellington city. Sophora tetraptera was the preferred species chosen by the female moth. The same species was also the most palatable and preferred when confronted to S. microphylla and S. prostrata. These patterns observed in controlled conditions are coincident with observations made in the field throughout the study.</p> <p>Within the set of variables determined by the invertebrate community, the influence of natural enemies on an herbivorous population is one of the most important in terms of population regulation. In my last experimental chapter I found a positive correlation among the parasitism by M. pulchricornis and U. polygonalis maorialis larval densities, which opens the possibilities for future research to explore the potential existence of population regulation mechanisms between these two taxa.</p> <p>Overall, the results of my thesis highlight the importance of understanding the influence of the structure of the habitat, types of resources provided by plants and natural enemies in determining the fluctuations of outbreaking insect species.</p>


2021 ◽  
Author(s):  
◽  
Enrique Arturo Mundaca

<p><b>The importance of habitat structure has been historically discussed in terms of its influence on diversity, distribution and abundance of living organisms. In this regard, the population fluctuations of any particular species, particularly outbreaking insect species, can be expected to be profoundly influenced by the structure of the habitat. A set of ecological hypotheses, such as, the associational resistance, plant decoy, habitat heterogeneity and resource concentration have implicitly included the structure of the habitat determined by the structure (size, density, physical location) of the host plant and other surrounding plant species. Moreover, type, quality and availability of resources, in addition to the presence of other interacting organisms, e.g. competitors, predators and parasites, have also been considered determining factors in the population fluctuation of outbreaking species. The aim of this thesis is to contribute to the understanding of how the outbreaks of the kowhai moth, U. polygonalis maorialis, relate to the physical structure of the habitat, the availability of resources, specific host plants and to natural enemies.</b></p> <p>In the first experimental chapter of my thesis I studied the fluctuations of the U. polygonalis maorialis larvae and their impacts on the defoliation levels of Sophora spp. plants. I carried out a survey in urban and suburban areas of Wellington city. I examined levels of defoliation of the host plants and population fluctuations in terms of a set of biotic and abiotic variables. These variables were selected in order to cover a range of measures of habitat structure, resource availability and invertebrate community. I modelled such responses to find which variables better explained the observed defoliation and larval population fluctuations. The best fitted model showed that levels of observed defoliation were explained by the structure of the vegetation surrounding the main host plant (vertical and horizontal) and the species of host plant. Population fluctuations of the kowhai moth were explained by the following predicting variables: density of natural enemies, structure of the vegetation surrounding the main host plant (vertical and horizontal), host plant size, level of habitat disturbance, type of habitat (urban/suburban) and the Sophora spp.</p> <p>In my second experimental chapter, I focused on the importance of availability of resources to explain observed densities of U. polygonalis maorialis and phytophagous insects. In my observational experiment I tested the resource concentration hypothesis and the natural enemies hypothesis, by studying the fluctuations of U. polygonalis maorialis larvae on individuals of Sophora microphylla plants located in gardens across Wellington city. Larval densities were found to be higher on smaller plants than large plants, whereas natural enemies did not show specific responses to plant size. In my manipulative experiment I originally aimed for the establishment of U. polygonalis maorialis in the experimental plots. Unfortunately, these were not colonised by U. polygonalis maorialis, instead I studied phytophagous insects that colonised the plots. I found no differences among the S. microphylla treatments for the levels of establishment of phytophagous invertebrates. On the contrary, the amount of nil records was high and there was an overall high variability among treatments and low rate of establishment throughout the sampling season. Nevertheless, natural enemies were found to occur more often at higher densities in plots with lower plant density in only two specific dates.</p> <p>Uresiphita polygonalis maorialis is the main defoliator of Sophora spp in New Zealand. In this context I studied the feeding and oviposition preferences of the moth for the three most commonly found species of Sophora plants in Wellington city. Sophora tetraptera was the preferred species chosen by the female moth. The same species was also the most palatable and preferred when confronted to S. microphylla and S. prostrata. These patterns observed in controlled conditions are coincident with observations made in the field throughout the study.</p> <p>Within the set of variables determined by the invertebrate community, the influence of natural enemies on an herbivorous population is one of the most important in terms of population regulation. In my last experimental chapter I found a positive correlation among the parasitism by M. pulchricornis and U. polygonalis maorialis larval densities, which opens the possibilities for future research to explore the potential existence of population regulation mechanisms between these two taxa.</p> <p>Overall, the results of my thesis highlight the importance of understanding the influence of the structure of the habitat, types of resources provided by plants and natural enemies in determining the fluctuations of outbreaking insect species.</p>


Sign in / Sign up

Export Citation Format

Share Document