scholarly journals Harmonious coloring of uniform hypergraphs

2016 ◽  
Vol 10 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Bartłomiej Bosek ◽  
Sebastian Czerwiński ◽  
Jarosław Grytczuk ◽  
Paweł Rzążewski

A harmonious coloring of a k-uniform hypergraph H is a vertex coloring such that no two vertices in the same edge share the same color, and each k-element subset of colors appears on at most one edge. The harmonious number h(H) is the least number of colors needed for such a coloring. We prove that k-uniform hypergraphs of bounded maximum degree ? satisfy h(H) = O(k?k!m), where m is the number of edges in H which is best possible up to a multiplicative constant. Moreover, for every fixed ?, this constant tends to 1 with k ? ?. We use a novel method, called entropy compression, that emerged from the algorithmic version of the Lov?sz Local Lemma due to Moser and Tardos.

10.37236/2055 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze ◽  
Andrzej Ruciński

Let $K_n^{(k)}$ be the complete $k$-uniform hypergraph, $k\ge3$, and let $\ell$ be an integer such that $1\le \ell\le k-1$ and $k-\ell$ divides $n$. An $\ell$-overlapping Hamilton cycle in $K_n^{(k)}$ is a spanning subhypergraph $C$ of  $K_n^{(k)}$  with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.We show that, for some constant $c=c(k,\ell)$ and sufficiently large $n$, for every coloring (partition) of the edges of $K_n^{(k)}$ which uses arbitrarily many colors but no color appears more than $cn^{k-\ell}$ times, there exists a rainbow $\ell$-overlapping Hamilton cycle $C$, that is every edge of $C$ receives a different color. We also prove that, for some constant $c'=c'(k,\ell)$ and sufficiently large $n$, for every coloring of the edges of $K_n^{(k)}$ in which the maximum degree of the subhypergraph induced by any single color is bounded by $c'n^{k-\ell}$,  there exists a properly colored $\ell$-overlapping Hamilton cycle $C$, that is every two adjacent edges receive different colors. For $\ell=1$, both results are (trivially) best possible up to the constants. It is an open question if our results are also optimal for $2\le\ell\le k-1$.The proofs  rely on a version of the Lovász Local Lemma and incorporate some ideas from Albert, Frieze, and Reed.


10.37236/3601 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Christian Löwenstein ◽  
Justin Southey ◽  
Anders Yeo

The independence number of a graph $G$, denoted $\alpha(G)$, is the maximum cardinality of an independent set of vertices in $G$. The independence number is one of the most fundamental and well-studied graph parameters. In this paper, we strengthen a result of Fajtlowicz [Combinatorica 4 (1984), 35-38] on the independence of a graph given its maximum degree and maximum clique size. As a consequence of our result we give bounds on the independence number and transversal number of $6$-uniform hypergraphs with maximum degree three. This gives support for a conjecture due to Tuza and Vestergaard [Discussiones Math. Graph Theory 22 (2002), 199-210] that if $H$ is a $3$-regular $6$-uniform hypergraph of order $n$, then $\tau(H) \le n/4$.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4733-4745 ◽  
Author(s):  
Cunxiang Duan ◽  
Ligong Wang ◽  
Peng Xiao ◽  
Xihe Li

Let ?1(G) and q1(G) be the spectral radius and the signless Laplacian spectral radius of a kuniform hypergraph G, respectively. In this paper, we give the lower bounds of d-?1(H) and 2d-q1(H), where H is a proper subgraph of a f (-edge)-connected d-regular (linear) k-uniform hypergraph. Meanwhile, we also give the lower bounds of 2?-q1(G) and ?-?1(G), where G is a nonregular f (-edge)-connected (linear) k-uniform hypergraph with maximum degree ?.


10.37236/5304 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

Let $H$ be a $4$-uniform hypergraph on $n$ vertices. The transversal number $\tau(H)$ of $H$ is the minimum number of vertices that intersect every edge. The result in [J. Combin. Theory Ser. B 50 (1990), 129—133] by Lai and Chang implies that $\tau(H) \le 7n/18$ when $H$ is $3$-regular. The main result in [Combinatorica 27 (2007), 473—487] by Thomassé and Yeo implies an improved bound of $\tau(H) \le 8n/21$. We provide a further improvement and prove that $\tau(H) \le 3n/8$, which is best possible due to a hypergraph of order eight. More generally, we show that if $H$ is a $4$-uniform hypergraph on $n$ vertices and $m$ edges with maximum degree $\Delta(H) \le 3$, then $\tau(H) \le n/4 + m/6$, which proves a known conjecture. We show that an easy corollary of our main result is that if $H$ is a $4$-uniform hypergraph with $n$ vertices and $n$ edges, then $\tau(H) \le \frac{3}{7}n$, which was the main result of the Thomassé-Yeo paper [Combinatorica 27 (2007), 473—487].


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 484
Author(s):  
Anita Keszler ◽  
Zsolt Tuza

In this paper, we consider the problem of constructing hypercycle systems of 5-cycles in complete 3-uniform hypergraphs. A hypercycle system C(r,k,v) of order v is a collection of r-uniform k-cycles on a v-element vertex set, such that each r-element subset is an edge in precisely one of those k-cycles. We present cyclic hypercycle systems C(3,5,v) of orders v=25,26,31,35,37,41,46,47,55,56, a highly symmetric construction for v=40, and cyclic 2-split constructions of orders 32,40,50,52. As a consequence, all orders v≤60 permitted by the divisibility conditions admit a C(3,5,v) system. New recursive constructions are also introduced.


2014 ◽  
Vol 672-674 ◽  
pp. 1935-1939
Author(s):  
Guan Ru Li ◽  
Yi Ming Lei ◽  
Jirimutu

About the Katona-Kierstead definition of a Hamiltonian cycles in a uniform hypergraph, a decomposition of complete k-uniform hypergraph Kn(k) into Hamiltonian cycles studied by Bailey-Stevens and Meszka-Rosa. For n≡2,4,5 (mod 6), we design algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of Kn(3) into 5-cycles has been presented for all admissible n≤17, and for all n=4m +1, m is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we use the method of edge-partition and cycle sequence proposed by Jirimutu and Wang. We find a decomposition of K20(3) into 5-cycles.


2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


10.37236/3414 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Ferrara ◽  
Stephen G. Hartke ◽  
Benjamin Reiniger ◽  
...  

A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.


10.37236/2631 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
András Gyárfás ◽  
Gábor N. Sárközy

Here we address the problem to partition edge colored hypergraphs by monochromatic paths and cycles generalizing a well-known similar problem for graphs.We show that $r$-colored $r$-uniform complete hypergraphs can be partitioned into monochromatic Berge-paths of distinct colors. Also, apart from $2k-5$ vertices, $2$-colored $k$-uniform hypergraphs can be partitioned into two monochromatic loose paths.In general, we prove that in any $r$-coloring of a $k$-uniform hypergraph there is a partition of the vertex set intomonochromatic loose cycles such that their number depends only on $r$ and $k$.


10.37236/3551 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Bhaswar B. Bhattacharya ◽  
Sayantan Das ◽  
Shirshendu Ganguly

In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their various properties. For a hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, a function $\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\}$ is said to be an edge-discriminator on $\mathcal H$ if $\sum_{v\in E_i}{\lambda(v)}>0$, for all hyperedges $E_i\in \mathscr E$, and $\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}$, for every two distinct hyperedges $E_i, E_j \in \mathscr E$. An optimal edge-discriminator on $\mathcal H$, to be denoted by $\lambda_\mathcal H$, is an edge-discriminator on $\mathcal H$ satisfying $\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}$, where the minimum is taken over all edge-discriminators on $\mathcal H$.  We prove that any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$,  with $|\mathscr E|=m$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq m(m+1)/2$, and the equality holds if and only if the elements of $\mathscr E$ are mutually disjoint. For $r$-uniform hypergraphs $\mathcal H=(\mathcal V, \mathscr E)$, it follows from earlier results on Sidon sequences that $\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1})$, and the bound is attained up to a constant factor by the complete $r$-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m~(\geq 3)$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=m(m+1)/2-1$. This shows that all integer values between $m$ and $m(m+1)/2$ cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises many other interesting combinatorial questions.


Sign in / Sign up

Export Citation Format

Share Document