scholarly journals The p-spectral radius of the Laplacian matrix

2018 ◽  
Vol 12 (2) ◽  
pp. 455-466
Author(s):  
Elizandro Borba ◽  
Eliseu Fritscher ◽  
Carlos Hoppen ◽  
Sebastian Richter

The p-spectral radius of a graph G=(V,E) with adjacency matrix A is defined as ?(p)(G) = max||x||p=1 xT Ax. This parameter shows connections with graph invariants, and has been used to generalize some extremal problems. In this work, we define the p-spectral radius of the Laplacian matrix L as ?(p)(G) = max||x||p=1 xT Lx. We show that ?(p)(G) relates to invariants such as maximum degree and size of a maximum cut. We also show properties of ?(p)(G) as a function of p, and a upper bound on maxG: |V(G)|=n ?(p)(G) in terms of n = |V| for p > 2, which is attained if n is even.

2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.


2016 ◽  
Vol 31 ◽  
pp. 335-361
Author(s):  
Xue Du ◽  
Lingsheng Shi

The spectral radius of a graph is the largest eigenvalue of the adjacency matrix of the graph. Let $T^*(n,\Delta ,l)$ be the tree which minimizes the spectral radius of all trees of order $n$ with exactly $l$ vertices of maximum degree $\Delta $. In this paper, $T^*(n,\Delta ,l)$ is determined for $\Delta =3$, and for $l\le 3$ and $n$ large enough. It is proven that for sufficiently large $n$, $T^*(n,3,l)$ is a caterpillar with (almost) uniformly distributed legs, $T^*(n,\Delta ,2)$ is a dumbbell, and $T^*(n,\Delta ,3)$ is a tree consisting of three distinct stars of order $\Delta $ connected by three disjoint paths of (almost) equal length from their centers to a common vertex. The unique tree with the largest spectral radius among all such trees is also determined. These extend earlier results of Lov\' asz and Pelik\'an, Simi\' c and To\u si\' c, Wu, Yuan and Xiao, and Xu, Lin and Shu.


10.37236/956 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Sebastian M. Cioabă

Let $G$ be an irregular graph on $n$ vertices with maximum degree $\Delta$ and diameter $D$. We show that $$ \Delta-\lambda_1>{1\over nD}, $$ where $\lambda_1$ is the largest eigenvalue of the adjacency matrix of $G$. We also study the effect of adding or removing few edges on the spectral radius of a regular graph.


10.37236/212 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
László Babai ◽  
Barry Guiduli

Let $G$ be a graph on $n$ vertices with spectral radius $\lambda$ (this is the largest eigenvalue of the adjacency matrix of $G$). We show that if $G$ does not contain the complete bipartite graph $K_{t ,s}$ as a subgraph, where $2\le t \le s$, then $$\lambda \le \Big((s-1)^{1/t }+o(1)\Big)n^{1-1/t }$$ for fixed $t$ and $s$ while $n\to\infty$. Asymptotically, this bound matches the Kővári-Turán-Sós upper bound on the average degree of $G$ (the Zarankiewicz problem).


10.37236/9638 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Dan Hu ◽  
Hajo Broersma ◽  
Jiangyou Hou ◽  
Shenggui Zhang

A mixed graph is a graph that can be obtained from a simple undirected graph by replacing some of the edges by arcs in precisely one of the two possible directions. The Hermitian adjacency matrix of a mixed graph $G$ of order $n$ is the $n \times n$ matrix $H(G)=(h_{ij})$, where $h_{ij}=-h_{ji}= \boldsymbol{\mathrm{i}}$ (with $\boldsymbol{\mathrm{i}} =\sqrt{-1})$ if there exists an arc from $v_i$ to $v_j$ (but no arc from $v_j$ to $v_i$), $h_{ij}=h_{ji}=1$ if there exists an edge (and no arcs) between $v_i$ and $v_j$, and $h_{ij}= 0$ otherwise (if $v_i$ and $v_j$ are neither joined by an edge nor by an arc). We study the spectra of the Hermitian adjacency matrix and the normalized Hermitian Laplacian matrix of general random mixed graphs, i.e., in which all arcs are chosen independently with different probabilities (and an edge is regarded as two oppositely oriented arcs joining the same pair of vertices). For our first main result, we derive a new probability inequality and apply it to obtain an upper bound on the eigenvalues of the Hermitian adjacency matrix. Our second main result shows that the eigenvalues of the normalized Hermitian Laplacian matrix can be approximated by the eigenvalues of a closely related weighted expectation matrix, with error bounds depending on the minimum expected degree of the underlying undirected graph.


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


Filomat ◽  
2014 ◽  
Vol 28 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Francesco Belardo

A graph is said to be (?,?)-bidegreed if vertices all have one of two possible degrees: the maximum degree ? or the minimum degree ?, with ? ? ?. We show that in the set of connected (?,1)- bidegreed graphs, other than trees, with prescribed degree sequence, the graphs minimizing the adjacency matrix spectral radius cannot have vertices adjacent to ? - 1 vertices of degree 1, that is, there are not any hanging trees. Further we consider the limit point for the spectral radius of (?,1)-bidegreed graphs when degree ? vertices are inserted in each edge between any two degree ? vertices.


2019 ◽  
Vol 35 (1) ◽  
pp. 31-40 ◽  
Author(s):  
BILAL A. CHAT ◽  
◽  
HILAL A. GANIE ◽  
S. PIRZADA ◽  
◽  
...  

We consider the skew Laplacian matrix of a digraph −→G obtained by giving an arbitrary direction to the edges of a graph G having n vertices and m edges. We obtain an upper bound for the skew Laplacian spectral radius in terms of the adjacency and the signless Laplacian spectral radius of the underlying graph G. We also obtain upper bounds for the skew Laplacian spectral radius and skew spectral radius, in terms of various parameters associated with the structure of the digraph −→G and characterize the extremal graphs.


Sign in / Sign up

Export Citation Format

Share Document