scholarly journals Identification of residues involved in nucleotidyltransferase activity of JHP933 from helicobacter pyloriby site-directed mutagenesis

2016 ◽  
Vol 68 (2) ◽  
pp. 439-444
Author(s):  
Xianren Ye ◽  
Yanhe Zhao ◽  
Xiuling Wu ◽  
Yintao Su ◽  
Yunkun Wu ◽  
...  

Helicobacter pylori is a well-known bacterial pathogen involved in the development of peptic ulcer, gastric adenocarcinoma and other forms of gastric cancer. Evidence has suggested that certain strain-specific genes in the plasticity region may play key roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. Therefore there is considerable interest in the strain-specific genes located in the plasticity regions of H. pylori. JHP933 is encoded by the gene in the plasticity region of H. pylori strain J99. Recently, the crystal structure of JHP933 has confirmed it as a nucleotidyltransferase (NTase) superfamily protein and a putative active site has been proposed. However, no evidence from direct functional assay has been presented to confirm the active site and little is known about the functional mechanism of JHP933. Here, through superimposition with Cid1/NTP complex structures, we modelled the complex structures of JHP933 with different NTPs. Based on the models and using rational site-directed mutagenesis combined with enzymatic activity assays, we confirm the active site and identify several residues important for the nucleotidyl transferring function of JHP933. Furthermore, mutations of these active site residues result in the abolishment of the nucleotidyltransferase activity of JHP933. This work provides preliminary insight into the molecular mechanism underlying the pathophysiological role in H. pylori infection of JHP933 as a novel NTase superfamily protein.

Glycobiology ◽  
1998 ◽  
Vol 8 (10) ◽  
pp. 1021-1028 ◽  
Author(s):  
G. Garcia-Casado ◽  
C. Collada ◽  
I. Allona ◽  
R. Casado ◽  
L. F. Pacios ◽  
...  

1994 ◽  
Vol 303 (2) ◽  
pp. 357-362 ◽  
Author(s):  
M P G van der Linden ◽  
L de Haan ◽  
O Dideberg ◽  
W Keck

Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser44), Lys47, Ser110-Gly-Asn, Asp175 and Lys213-Thr-Gly were identified as the residues making up the conserved boxes of this protein family. To determine the role of these residues, they were replaced using site-directed mutagenesis. The mutant proteins were assayed for their penicillin-binding capacity and DD-carboxypeptidase activity. The Ser44Cys and the Ser44Gly mutants showed a complete loss of both penicillin-binding capacity and DD-carboxypeptidase activity. The Lys47Arg mutant also lost its DD-carboxypeptidase activity but was able to bind and hydrolyse penicillin, albeit at a considerably reduced rate. Mutants in the Ser110-Gly-Asn fingerprint were affected in both acylation and deacylation upon reaction with penicillin and lost their DD-carboxypeptidase activity with the exception of Asn112Ser and Asn112Thr. The Asp175Asn mutant showed wild-type penicillin-binding but a complete loss of DD-carboxypeptidase activity. Mutants of Lys213 lost both penicillin-binding and DD-carboxypeptidase activity except for Lys213His, which still bound penicillin with a k+2/K' of 0.2% of the wild-type value. Mutation of His216 and Thr217 also had a strong effect on DD-carboxypeptidase activity. Thr217Ser and Thr217Ala showed augmented hydrolysis rates for the penicillin acyl-enzyme. This study reveals the residues in the conserved fingerprints to be very important for both DD-carboxypeptidase activity and penicillin-binding, and confirms them to play crucial roles in catalysis.


2005 ◽  
Vol 248 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Tim Urich ◽  
Anja Kroke ◽  
Christian Bauer ◽  
Kerstin Seyfarth ◽  
Muriel Reuff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document