scholarly journals Curcumin inhibits the expression of ornithine decarboxylase and adenosine deaminase genes in MCF-7 human breast cancer cells

2018 ◽  
Vol 70 (4) ◽  
pp. 639-645 ◽  
Author(s):  
Hossein Abbaspour ◽  
Afshar Safipour

Curcumin is the active ingredient of Curcuma longa, which inhibits the development of malignant cells. Prevention and treatment of cancer by natural compounds, especially curcumin, and understanding the mechanism of action, is an area of interest in cancer research. In this study, we evaluated the effects of curcumin on cell proliferation, ornithine decarboxylase 1 (ODC1) and adenosine deaminase (ADA) gene expression in human breast cancer cell line (MCF-7) as compared to the non-cancer line (MCF-10A). Both cell lines were subjected to increasing doses of curcumin, ranging from 0 to 30 ?g/mL. Cell viability was quantified by the MTT assay. In vitro clonogenic survival assay was performed on MCF-7 cells. Expression of ADA and ODC1 were analyzed by Western blotting and qRT-PCR. Curcumin inhibited the growth of malignant cells in a time- and dose-dependent manner. The calculated IC50 value for MCF-7 cells in 48 h was 12 ?g/mL. Forty-five to 70% decreases in colony formation were observed in MCF-7 cells treated with 30-60 ?g/mL curcumin, respectively. Our data revealed a dose-dependent downregulation of ODC1 and ADA expression and respective enzyme activities by curcumin, which correlated with decreased proliferation in the MCF-7 breast cancer cell line. These data suggest that curcumin represses the proliferation of breast cancer cells through downregulation of ODC1 and ADA gene expression, which might be another mechanism of curcumin-mediated tumor growth inhibition.

2018 ◽  
Vol 18 (17) ◽  
pp. 1465-1474 ◽  
Author(s):  
Jessica R. Branco ◽  
Vanessa G. Oliveira ◽  
Amanda M. Esteves ◽  
Ingrid C. Chipoline ◽  
Miriam F.O. Lima ◽  
...  

Background: Breast cancer is a major cause of death among women worldwide. Treatment for breast cancer involves the surgical removal of cancer tissue, followed by chemotherapy. Although the treatment is efficient, especially when the cancer is detected early, recurrence is common and is often resistant to the previous treatment. Therefore, a constant search for efficient and novel drugs for the treatment of breast cancer is mandatory. Recently, triazole derivatives have shown promising effects against different types of cancer, revealing these molecules as putative anticancer drugs. Experimental: We have synthesized a series of naphthotriazolyl-4-oxoquinoline derivatives and tested their activity against a human breast cancer cell line. Among the compounds tested, we identified a molecule that killed the human breast cancer cell line MCF-7 with minimal effects on its noncancer counterpart, MCF10A. This effect was seen after 24 hours of treatment and persisted for additional 24 hours after treatment withdrawal. After 1 hour of treatment, the compound, here named 12c, promoted a decrease in cell glucose consumption and lactate production. Moreover, the cells treated with 12c for 1 hour showed diminished intracellular ATP levels with unaltered mitochondrial potential and increased reactive oxygen species production. Additionally, apoptosis was triggered after treatment with the drug for 1 hour. All of these effects are only observed with MCF-7 cells, and not MCF10A. These data show that 12c has selective activity against breast cancer cells and is a potential candidate for a novel anticancer drug. Results and Conclusion: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields, and one of them, 12c, exhibited strong and selective antitumor properties. The antitumor mechanism involves inhibition of glycolysis, diminished intracellular ATP levels, induction of ROS production and triggering of apoptosis. These effects are all selective for cancer cells, since noncancer cells are unaffected, and these effects can only be attributed to the whole molecule, as different pharmacophoric groups did not reproduce these effects.


2017 ◽  
Vol 12 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Maryam Karimi ◽  
Hossein Babaahmadi-Rezaei ◽  
Ghorban Mohammadzadeh ◽  
Mohammad-Ali Ghaffari

Sign in / Sign up

Export Citation Format

Share Document