scholarly journals Hölder’s means and triangles inscribed in a semicircle in Banach spaces

Filomat ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 371-377
Author(s):  
Huanhuan Cui ◽  
Ge Lu

By the H?lder?s means, we introduce two classes geometric constants for Banach spaces. We study some geometric properties related to these constants and the stability under norm perturbations of them.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1285
Author(s):  
Asif Ahmad ◽  
Yuankang Fu ◽  
Yongjin Li

In this paper, we will make some further discussions on the JL(X) and YJ(X) which are symmetric and related to the side lengths of some special inscribed triangles of the unit ball, and also introduce two new geometric constants L1(X,▵), L2(X,▵) which related to the perimeters of some special inscribed triangles of the unit ball. Firstly, we discuss the relations among JL(X), YJ(X) and some geometric properties of Banach spaces, including uniformly non-square and uniformly convex. It is worth noting that we point out that uniform non-square spaces can be characterized by the side lengths of some special inscribed triangles of unit ball. Secondly, we establish some inequalities for JL(X), YJ(X) and some significant geometric constants, including the James constant J(X) and the von Neumann-Jordan constant CNJ(X). Finally, we introduce the two new geometric constants L1(X,▵), L2(X,▵), and calculate the bounds of L1(X,▵) and L2(X,▵) as well as the values of L1(X,▵) and L2(X,▵) for two Banach spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


Filomat ◽  
2020 ◽  
Vol 34 (13) ◽  
pp. 4311-4328
Author(s):  
A.R. Sharifi ◽  
Azadi Kenary ◽  
B. Yousefi ◽  
R. Soltani

The main goal of this paper is study of the Hyers-Ulam-Rassias stability (briefly HUR-approximation) of the following Euler-Lagrange type additive(briefly ELTA) functional equation ?nj=1f (1/2 ?1?i?n,i?j rixi- 1/2 rjxj) + ?ni=1 rif(xi)=nf (1/2 ?ni=1 rixi) where r1,..., rn ? R, ?ni=k rk?0, and ri,rj?0 for some 1? i < j ? n, in fuzzy normed spaces. The concept of HUR-approximation originated from Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 390 ◽  
Author(s):  
Wissam Kassab ◽  
Teodor Ţurcanu

In this paper, we study an iteration process introduced by Thakur et al. for Suzuki mappings in Banach spaces, in the new context of modular vector spaces. We establish existence results for a more recent version of Suzuki generalized non-expansive mappings. The stability and data dependence of the scheme for ρ -contractions is studied as well.


Author(s):  
Jesús M. F. Castillo ◽  
Willian H. G. Corrêa ◽  
Valentin Ferenczi ◽  
Manuel González

We study the stability of the differential process of Rochberg and Weiss associated with an analytic family of Banach spaces obtained using the complex interpolation method for families. In the context of Köthe function spaces, we complete earlier results of Kalton (who showed that there is global bounded stability for pairs of Köthe spaces) by showing that there is global (bounded) stability for families of up to three Köthe spaces distributed in arcs on the unit circle while there is no (bounded) stability for families of four or more Köthe spaces. In the context of arbitrary pairs of Banach spaces, we present some local stability results and some global isometric stability results.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2229
Author(s):  
Emanuel Guariglia ◽  
Kandhasamy Tamilvanan

This paper deals with the approximate solution of the following functional equation fx7+y77=f(x)+f(y), where f is a mapping from R into a normed vector space. We show stability results of this equation in quasi-β-Banach spaces and (β,p)-Banach spaces. We also prove the nonstability of the previous functional equation in a relevant case.


2020 ◽  
Vol 148 (11) ◽  
pp. 4837-4844
Author(s):  
Lixin Cheng ◽  
Yunbai Dong
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Danyal Soybaş

A Banach space is said to have (D) property if every bounded linear operator is weakly compact for every Banach space whose dual does not contain an isomorphic copy of . Studying this property in connection with other geometric properties, we show that every Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V) property) has (D) property. We show that the space of real functions, which are integrable with respect to a measure with values in a Banach space , has (D) property. We give some other results concerning Banach spaces with (D) property.


Sign in / Sign up

Export Citation Format

Share Document