scholarly journals A trigonometric orthogonality with respect to a nonnegative Borel measure

Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 689-696 ◽  
Author(s):  
Gradimir Milovanovic ◽  
Aleksandar Cvetkovic ◽  
Marija Stanic

In this paper we consider trigonometric polynomials of semi-integer degree orthogonal with respect to a linear functional, defined by a nonnegative Borel measure. By using a suitable vector form we consider the corresponding Fourier sums and reproducing kernels for trigonometric polynomials of semi- integer degree. Also, we consider the Christoffel function, and prove that it satisfies extremal property analogous with the algebraic case.

Author(s):  
Oleg Novikov ◽  
Olga Rovenska

The paper deals with the problems of approximation in a uniform metric of periodic functions of many variables by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. Questions of asymptotic behavior of the upper bounds of deviations of linear operators generated by the use of linear methods of summation of Fourier series on the classes of periodic differentiable functions are studied in many works. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol'skii, S.B. Stechkin, N.P.Korneichuk, V.K. Dzadik, A.I. Stepanets, etc. Along with the study of approximation by linear methods of classes of functions of one variable, are studied similar problems of approximation by linear methods of classes of functions of many variables. In addition to the approximative properties of rectangular Fourier sums, are studied approximative properties of other approximation methods: the rectangular sums of Valle Poussin, Zigmund, Rogozinsky, Favar. In this paper we consider the classes of \(\overline{\psi}\)-differentiable periodic functions of many variables, allowing separately to take into account the properties of partial and mixed \(\overline{\psi}\)-derivatives, and given by analogy with the classes of \(\overline{\psi}\)-differentiable periodic functions of one variable. Integral representations of rectangular linear means of Fourier series on classes of \(\overline{\psi}\)-differentiable periodic functions of many variables are obtained. The obtained formulas can be useful for further investigation of the approximative properties of various linear rectangular methods on the classes \(\overline{\psi}\)-differentiable periodic functions of many variables in order to obtain a solution to the corresponding Kolmogorov-Nikolsky problems.


2021 ◽  
pp. 7
Author(s):  
V.F. Babenko ◽  
S.A. Pichugov

We point out that$$\inf\limits_{L \in L_n} \sup\limits_{\substack{f \in C_{2\pi}\\f \ne const}} \frac{\max \| f(x) - L(f, x) \|}{\omega^*_2(f, \pi/n + 1)} = \frac{1}{2}$$where $C_{2\pi}$ is the space of periodic continuous functions on real domain, $L_n$ is the set of linear operators that map $C_{2\pi}$ to the set of trigonometric polynomials of order no greater than $n$ ($n = 0,1,\ldots$), $\omega_2(f, t) = \sup\limits_{x, |h| \leqslant t} |f(x-h) - 2f(x) + f(x+h)|$, $\omega^*_2(f, t)$ is the concave hull of the function $\omega_2(f, t)$. In this equality, the infimum is attained for Korovkin's means.


Filomat ◽  
2020 ◽  
Vol 34 (14) ◽  
pp. 4697-4707
Author(s):  
Anatoly Serdyuk ◽  
Tetiana Stepanyuk

In this paper we establish Lebesgue-type inequalities for 2?-periodic functions f, which are defined by generalized Poisson integrals of the functions ? from Lp, 1 ? p < 1. In these inequalities uniform norms of deviations of Fourier sums ||f-Sn-1||C are expressed via best approximations En(?)Lp of functions ? by trigonometric polynomials in the metric of space Lp. We show that obtained estimates are asymptotically best possible.


2017 ◽  
Vol 13 (4) ◽  
pp. 106-116
Author(s):  
Alaa A. Auad ◽  
◽  
Mousa M. Khrajan

2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Sign in / Sign up

Export Citation Format

Share Document