scholarly journals Spectral determination of some chemical graphs

Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1123-1131 ◽  
Author(s):  
Changjiang Bu ◽  
Jiang Zhou ◽  
Hongbo Li

Let Tk denote the caterpillar obtained by attaching k pendant edges at two pendant vertices of the path Pn and two pendant edges at the other vertices of Pn. It is proved that Tk is determined by its signless Laplacian spectrum when k = 2 or 3, while T2 by its Laplacian spectrum.

2014 ◽  
Vol 06 (04) ◽  
pp. 1450050
Author(s):  
Lizhen Xu ◽  
Changxiang He

Let G be an r-regular graph with order n, and G ∨ H be the graph obtained by joining each vertex of G to each vertex of H. In this paper, we prove that G ∨ K2is determined by its signless Laplacian spectrum for r = 1, n - 2. For r = n - 3, we show that G ∨ K2is determined by its signless Laplacian spectrum if and only if the complement of G has no triangles.


2020 ◽  
Vol 36 (36) ◽  
pp. 461-472
Author(s):  
Chandrashekar Adiga ◽  
Kinkar Das ◽  
B. R. Rakshith

In literature, there are some results known about spectral determination of graphs with many edges. In [M.~C\'{a}mara and W.H.~Haemers. Spectral characterizations of almost complete graphs. {\em Discrete Appl. Math.}, 176:19--23, 2014.], C\'amara and Haemers studied complete graph with some edges deleted for spectral determination. In fact, they found that if the deleted edges form a matching, a complete graph $K_m$ provided $m \le n-2$, or a complete bipartite graph, then it is determined by its adjacency spectrum. In this paper, the graph $K_{n}\backslash K_{l,m}$ $(n>l+m)$ which is obtained from the complete graph $K_{n}$ by removing all the edges of a complete bipartite subgraph $K_{l,m}$ is studied. It is shown that the graph $K_{n}\backslash K_{1,m}$ with $m\ge4$ is determined by its signless Laplacian spectrum, and it is proved that the graph $K_{n}\backslash K_{l,m}$ is determined by its distance spectrum. The signless Laplacian spectral determination of the multicone graph $K_{n-2\alpha}\vee \alpha K_{2}$ was studied by Bu and Zhou in [C.~Bu and J.~Zhou. Signless Laplacian spectral characterization of the cones over some regular graphs. {\em Linear Algebra Appl.}, 436:3634--3641, 2012.] and Xu and He in [L. Xu and C. He. On the signless Laplacian spectral determination of the join of regular graphs. {\em Discrete Math. Algorithm. Appl.}, 6:1450050, 2014.] only for $n-2\alpha=1 ~\text{or}~ 2$. Here, this problem is completely solved for all positive integer $n-2\alpha$. The proposed approach is entirely different from those given by Bu and Zhou, and Xu and He.


2018 ◽  
Vol 10 (06) ◽  
pp. 1850074 ◽  
Author(s):  
Somnath Paul

Let [Formula: see text] and [Formula: see text] be three graphs on disjoint sets of vertices and [Formula: see text] has [Formula: see text] edges. Let [Formula: see text] be the graph obtained from [Formula: see text] and [Formula: see text] in the following way: (1) Delete all the edges of [Formula: see text] and consider [Formula: see text] disjoint copies of [Formula: see text]. (2) Join each vertex of the [Formula: see text]th copy of [Formula: see text] to the end vertices of the [Formula: see text]th edge of [Formula: see text]. Let [Formula: see text] be the graph obtained from [Formula: see text] by joining each vertex of [Formula: see text] with each vertex of [Formula: see text] In this paper, we determine the adjacency (respectively, Laplacian, signless Laplacian) spectrum of [Formula: see text] in terms of those of [Formula: see text] and [Formula: see text] As an application, we construct infinite pairs of cospectral graphs.


2010 ◽  
Vol 4 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Slobodan Simic ◽  
Zoran Stanic

A graph is called Q-integral if its signless Laplacian spectrum consists entirely of integers. We establish some general results regarding signless Laplacians of semiregular bipartite graphs. Especially, we consider those semiregular bipartite graphs with integral signless Laplacian spectrum. In some particular cases we determine the possible Q-spectra and consider the corresponding graphs.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
S. R. Jog ◽  
Raju Kotambari

Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (Qenergy) of coalescence of pair of complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from itsQenergy.


10.37236/314 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jianfeng Wang ◽  
Francesco Belardo ◽  
Qiongxiang Huang ◽  
Enzo M. Li Marzi

A dumbbell graph, denoted by $D_{a,b,c}$, is a bicyclic graph consisting of two vertex-disjoint cycles $C_a$, $C_b$ and a path $P_{c+3}$ ($c \geq -1$) joining them having only its end-vertices in common with the two cycles. In this paper, we study the spectral characterization w.r.t. the adjacency spectrum of $D_{a,b,0}$ (without cycles $C_4$) with $\gcd(a,b)\geq 3$, and we complete the research started in [J.F. Wang et al., A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009) 1707–1714]. In particular we show that $D_{a,b,0}$ with $3 \leq \gcd(a,b) < a$ or $\gcd(a,b)=a$ and $b\neq 3a$ is determined by the spectrum. For $b=3a$, we determine the unique graph cospectral with $D_{a,3a,0}$. Furthermore we give the spectral characterization w.r.t. the signless Laplacian spectrum of all dumbbell graphs.


2019 ◽  
Vol 11 (2) ◽  
pp. 407-417 ◽  
Author(s):  
S. Pirzada ◽  
H.A. Ganie ◽  
A.M. Alghamdi

For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is equal to 1 if $v_i$ is adjacent to $v_j$ and equal to 0, otherwise. Let $D(G)={diag}(d_1, d_2, \dots, d_n)$ be the diagonal matrix associated to $G$, where $d_i=\deg(v_i),$ for all $i\in \{1,2,\dots,n\}$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum ($L$-spectrum) and the signless Laplacian spectrum ($Q$-spectrum) of the graph $G$. If $0=\mu_n\leq\mu_{n-1}\leq\cdots\leq\mu_1$ are the Laplacian eigenvalues of $G$, Brouwer conjectured that the sum of $k$ largest Laplacian eigenvalues $S_{k}(G)$ satisfies $S_{k}(G)=\sum\limits_{i=1}^{k}\mu_i\leq m+{k+1 \choose 2}$ and this conjecture is still open. If $q_1,q_2, \dots, q_n$ are the signless Laplacian eigenvalues of $G$, for $1\leq k\leq n$, let $S^{+}_{k}(G)=\sum_{i=1}^{k}q_i$ be the sum of $k$ largest signless Laplacian eigenvalues of $G$. Analogous to Brouwer's conjecture, Ashraf et al. conjectured that $S^{+}_{k}(G)\leq m+{k+1 \choose 2}$, for all $1\leq k\leq n$. This conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds for $S^{+}_{k}(G)$ in terms of the clique number $\omega$, the vertex covering number $\tau$ and the diameter of the graph $G$. Finally, we show that the conjecture holds for large families of graphs.


Sign in / Sign up

Export Citation Format

Share Document