scholarly journals On the stability of a differential-difference analogue of a two-dimensional problem of integral geometry

Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 933-938
Author(s):  
Galitdin Bakanov

A differential-difference analogue of a two-dimensional problem of integral geometry with a weight function is studied. A stability estimate for the problem considered is obtained.

1968 ◽  
Vol 33 (1) ◽  
pp. 21-32 ◽  
Author(s):  
K. S. Gage ◽  
W. H. Reid

In studying the stability of a thermally stratified fluid in the presence of a viscous shear flow, we have a situation in which there is an important interaction between the mechanism of instability due to the stratification and the Tollmien-Schlichting mechanism due to the shear. A complete analysis has been carried out for the Bénard problem in the presence of a plane Poiseuille flow and it is shown that, although Squire's transformation can be used to reduce the three-dimensional problem to an equivalent two-dimensional one, a theorem of Squire's type does not follow unless the Richardson number exceeds a certain small negative value. This conclusion follows from the fact that, when the stratification is unstable and the Prandtl number is unity, the equivalent two-dimensional problem becomes identical mathematically to the stability problem for spiral flow between rotating cylinders and, from the known results for the spiral flow problem, Squire's transformation can then be used to obtain the complete three-dimensional stability boundary. For the case of stable stratification, however, Squire's theorem is valid and the instability is of the usual Tollmien—Schlichting type. Additional calculations have been made for this case which show that the flow is completely stabilized when the Richardson number exceeds a certain positive value.


Author(s):  
Askar Rahmonov ◽  
D. K. Durdiev ◽  
Zavqiddin Bozorov

In this paper, we consider two dimensional inverse problem for a fractional diffusion equation. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.


2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


In the first part of this paper opportunity has been taken to make some adjustments in certain general formulae of previous papers, the necessity for which appeared in discussions with other workers on this subject. The general results thus amended are then applied to a general discussion of the stability problem including the effect of the trailing wake which was deliberately excluded in the previous paper. The general conclusion is that to a first approximation the wake, as usually assumed, has little or no effect on the reality of the roots of the period equation, but that it may introduce instability of the oscillations, if the centre of gravity of the element is not sufficiently far forward. During the discussion contact is made with certain partial results recently obtained by von Karman and Sears, which are shown to be particular cases of the general formulae. An Appendix is also added containing certain results on the motion of a vortex behind a moving cylinder, which were obtained to justify certain of the assumptions underlying the trail theory.


2006 ◽  
Vol 14 (2) ◽  
pp. 313-332 ◽  
Author(s):  
Daniel L. Schwartz ◽  
Taylor Martin

If distributed cognition is to become a general analytic frame, it needs to handle more aspects of cognition than just highly efficient problem solving. It should also handle learning. We identify four classes of distributed learning: induction, repurposing, symbiotic tuning, and mutual adaptation. The four classes of distributed learning fit into a two-dimensional space defined by the stability and adaptability of individuals and their environments. In all four classes of learning, people and their environments are highly interdependent during initial learning. At the same time, we present evidence indicating that certain types of interdependence in early learning, most notably mutual adaptation, can help prepare people to be less dependent on their immediate environment and more adaptive when they confront new environments. We also describe and test examples of learning technologies that implement mutual adaptation.


2010 ◽  
Vol 645 ◽  
pp. 411-434 ◽  
Author(s):  
PETER GUBA ◽  
M. GRAE WORSTER

We study nonlinear, two-dimensional convection in a mushy layer during solidification of a binary mixture. We consider a particular limit in which the onset of oscillatory convection just precedes the onset of steady overturning convection, at a prescribed aspect ratio of convection patterns. This asymptotic limit allows us to determine nonlinear solutions analytically. The results provide a complete description of the stability of and transitions between steady and oscillatory convection as functions of the Rayleigh number and the compositional ratio. Of particular focus are the effects of the basic-state asymmetries and non-uniformity in the permeability of the mushy layer, which give rise to abrupt (hysteretic) transitions in the system. We find that the transition between travelling and standing waves, as well as that between standing waves and steady convection, can be hysteretic. The relevance of our theoretical predictions to recent experiments on directionally solidifying mushy layers is also discussed.


Sign in / Sign up

Export Citation Format

Share Document