contact discontinuities
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012055
Author(s):  
V A Tenenev ◽  
M R Koroleva ◽  
A A Chernova

Abstract The paper considers the numerical simulation of spatial flows of real media in safety valves on the basis of the problem of an arbitrary discontinuity breakdown with complex equations of state. The solution is constructed by means of the developed numerical method, which is a modification of the classical scheme by S. K. Godunov and includes various complex equations of state of matter. The Van der Waals equations of state were used to model the flow of real gases, and the Mie-Grüneisen equation was used to describe the flow of a real weakly compressible fluid. It is shown that the proposed numerical schemes allow for modeling fluid and gas dynamic processes in real fluids and gases with shock waves and contact discontinuities and can be used both in areas of classical medium behavior and in areas with non-classical behavior.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 30-65
Author(s):  
D J Ratliff

Abstract The study of hyperbolic waves involves various notions which help characterise how these structures evolve. One important facet is the notion of genuine nonlinearity, namely the ability for shocks and rarefactions to form instead of contact discontinuities. In the context of the Whitham modulation equations, this paper demonstrate that a loss of genuine nonlinearity leads to the appearance of a dispersive set of dynamics in the form of the modified Korteweg de-Vries equation governing the evolution of the waves instead. Its form is universal in the sense that its coefficients can be written entirely using linear properties of the underlying waves such as the conservation laws and linear dispersion relation. This insight is applied to two systems of physical interest, one an optical model and the other a stratified hydrodynamics experiment, to demonstrate how it can be used to provide insight into how waves in these systems evolve when genuine nonlinearity is lost.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110452
Author(s):  
Omar Rabbani ◽  
Saqib Zia ◽  
Asad Rehman

In this article, a weighted essentially non-oscillatory (WENO) scheme is implemented to simulate two-phase shallow granular flow (TPSF) model. The flow is assumed to be incompressible and it is regarded as shallow layer of granular and liquid material. The mathematical model consists of two phases, that is, solid and liquid. Each phase has its continuity and momentum equation. The presence of the equations are coupled together involving the derivatives of unknowns which make it more challenging to solve. An efficient numerical technique is needed to tackle the numerical complexities. Our main intrigue is the numerical approximation of the above-mentioned solid-liquid model. The weighted essentially non-oscillatory (WENO) scheme of order 5 is utilized to handle the shock waves and contact discontinuities appear in the solution. The results are compared with the results already available in the literature by conservation element and solution element (CESE) scheme. It is observed the WENO scheme produces less errors as compared to CESE scheme and also effectively handle the shocks.


2021 ◽  
Author(s):  
Jun Liu ◽  
Fang Han ◽  
Yan Xin Wei

Abstract The contact discontinuity is simulated by three kinds of flux splitting schemes to evaluate and analyse the influence of numerical dissipation in this paper. The numerical results of one-dimensional contact discontinuity problem show that if the flow velocity on both sides of the contact discontinuity is not simultaneously supersonic, the non-physical pressure and velocity waves may occur when the initial theoretically contact discontinuity is smeared into a transition zone spanning several grid-cells caused by numerical dissipations. Since these non-physical waves have no effect on the corresponding density dissipation, this paper considers these fluctuations as only numerical errors and are not part of the numerical dissipation. In addition, for two-dimensional flow field, the characteristics of high-order accuracy difference schemes, i.e. low dissipation and high resolution, may induce the multi-dimensional non-physical waves that interfere with each other to produce more complex non-physical flow structures, so the fluctuations in the calculated results should be treated with caution.


Author(s):  
Alexander Kurganov ◽  
Yongle Liu ◽  
Vladimir Zeitlin

We propose a numerical dissipation switch, which helps to control the amount of numerical dissipation present in central-upwind schemes. Our main goal is to reduce the numerical dissipation without risking oscillations. This goal is achieved with the help of a more accurate estimate of the local propagation speeds in the parts of the computational domain, which are near contact discontinuities and shears. To this end, we introduce a switch parameter, which depends on the distributions of energy in the x- and y-directions. The resulting new central-upwind is tested on a number of numerical examples, which demonstrate the superiority of the proposed method over the original central-upwind scheme.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 865
Author(s):  
Jordi Palacín ◽  
David Martínez ◽  
Elena Rubies ◽  
Eduard Clotet

The optimal design of an omnidirectional wheel is usually focused on the minimization of the gap between the free rollers of the wheel in order to minimize contact discontinuities with the floor in order to minimize the generation of vibrations. However, in practice, a fast, tall, and heavy-weighted mobile robot using optimal omnidirectional wheels may also need a suspension system in order to reduce the presence of vibrations and oscillations in the upper part of the mobile robot. This paper empirically evaluates whether a heavy-weighted omnidirectional mobile robot can take advantage of its passive suspension system in order to also use non-optimal or suboptimal omnidirectional wheels with a non-optimized inner gap. The main comparative advantages of the proposed suboptimal omnidirectional wheel are its low manufacturing cost and the possibility of taking advantage of the gap to operate outdoors. The experimental part of this paper compares the vibrations generated by the motion system of a versatile mobile robot using optimal and suboptimal omnidirectional wheels. The final conclusion is that a suboptimal wheel with a large gap produces comparable on-board vibration patterns while maintaining the traction and increasing the grip on non-perfect planar surfaces.


Sign in / Sign up

Export Citation Format

Share Document