scholarly journals Linear functionals on hypervector spaces

Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 3031-3043
Author(s):  
O.R. Dehghan

The study of linear functionals, as an important special case of linear transformations, is one of the key topics in linear algebra and plays a significant role in analysis. In this paper we generalize the crucial results from the classical theory and study main properties of linear functionals on hypervector spaces. In this way, we obtain the dual basis of a given basis for a finite-dimensional hypervector space. Moreover, we investigate the relation between linear functionals and subhyperspaces and conclude the dimension of the vector space of all linear functionals over a hypervector space, the dimension of sum of two subhyperspaces and the dimension of the annihilator of a subhyperspace, under special conditions. Also, we show that every superhyperspace is the kernel of a linear functional. Finally, we check out whether every basis for the vector space of all linear functionals over a hypervector space V is the dual of some basis for V.

2017 ◽  
Vol 103 (3) ◽  
pp. 402-419 ◽  
Author(s):  
WORACHEAD SOMMANEE ◽  
KRITSADA SANGKHANAN

Let$V$be a vector space and let$T(V)$denote the semigroup (under composition) of all linear transformations from$V$into$V$. For a fixed subspace$W$of$V$, let$T(V,W)$be the semigroup consisting of all linear transformations from$V$into$W$. In 2008, Sullivan [‘Semigroups of linear transformations with restricted range’,Bull. Aust. Math. Soc.77(3) (2008), 441–453] proved that$$\begin{eqnarray}\displaystyle Q=\{\unicode[STIX]{x1D6FC}\in T(V,W):V\unicode[STIX]{x1D6FC}\subseteq W\unicode[STIX]{x1D6FC}\} & & \displaystyle \nonumber\end{eqnarray}$$is the largest regular subsemigroup of$T(V,W)$and characterized Green’s relations on$T(V,W)$. In this paper, we determine all the maximal regular subsemigroups of$Q$when$W$is a finite-dimensional subspace of$V$over a finite field. Moreover, we compute the rank and idempotent rank of$Q$when$W$is an$n$-dimensional subspace of an$m$-dimensional vector space$V$over a finite field$F$.


1975 ◽  
Vol 27 (3) ◽  
pp. 666-678 ◽  
Author(s):  
Charalambos D. Aliprantis

W. A. J. Luxemburg and A. C. Zaanen in [7] and W. A. J. Luxemburg in [5] have studied the order properties of the order bounded linear functionals of a given Riesz space L. In this paper we consider the vector space (L, M) of the order bounded linear transformations from a given Riesz space L into a Dedekind complete Riesz space M.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950031
Author(s):  
Geena Joy ◽  
K. V. Thomas

This paper introduces the concept of lattice vector space and establishes many important results. Also, this paper deals with linear transformations on lattice vector spaces and discusses their elementary properties. We prove that every finite dimensional lattice vector space is isomorphic to [Formula: see text] and show that the set of all columns (or the set of all rows) of an invertible matrix over [Formula: see text] is a basis for [Formula: see text].


1985 ◽  
Vol 28 (3) ◽  
pp. 319-331 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

Let X be a set and the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of that can be written as a product of idempotents in different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3, 4] (and independently for finite X by Sullivan [15]) to the semigroup of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite–dimensional vector space.


1993 ◽  
Vol 45 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Ming–Huat Lim

AbstractLet U be a finite dimensional vector space over an infinite field F. Let U(r) denote the r–th symmetric product space over U. Let T: U(r) → U(s) be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements. Let dim U ≥ s + 1. Then we obtain the structure of T for the following cases: (I) F is algebraically closed, (II) F is the real field, and (III) T is injective.


Author(s):  
F. F. Bonsall ◽  
A. W. Goldie

This paper was originally intended to contain a generalization of a theorem of Banach on the extension of linear functionals. This generalized theorem now appears as a by-product of a study of a class of algebras which we believe to be of much greater interest than the theorem itself. Let X be a vector space over the real field and let π(x) be a sub-additive, positive-homogeneous functional on X. Banach ((2), pp. 27–9) proves that any real linear functional f on a subspace X0 of X which satisfies f(x) ≤ π(x) on X0 can be extended to a real linear functional F on X with F(x) ≤ π(x) on X. One of the essential differences between this theorem and the Hahn-Banach theorem is that π can take negative values.


1971 ◽  
Vol 41 ◽  
pp. 69-73 ◽  
Author(s):  
Takehiko Miyata

Let G be a group and let k be a field. A K-representation ρ of G is a homomorphism of G into the group of non-singular linear transformations of some finite-dimensional vector space V over k. Let K be the field of fractions of the symmetric algebra S(V) of V, then G acts naturally on K as k-automorphisms. There is a natural inclusion map V→K, so we view V as a k-subvector space of K. Let v1, v2, · · ·, vn be a basis for V, then K is generated by v1, v2, · · ·, vn over k as a field and these are algebraically independent over k, that is, K is a rational field over k with the transcendence degree n. All elements of K fixed by G form a subfield of K. We denote this subfield by KG.


Author(s):  
W. J. Wong

AbstractThe surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a finite-dimensional vector space over a division ring which preserve the set of rank 1 elements are determined. As an application, maps preserving commuting pairs of transformations are determined.


1971 ◽  
Vol 23 (1) ◽  
pp. 22-35 ◽  
Author(s):  
David Sachs

It is a classical result of mathematics that there is an intimate connection between linear algebra and projective or affine geometry. Thus, many algebraic results can be given a geometric interpretation, and geometric theorems can quite often be proved more easily by algebraic methods. In this paper we apply topological ideas to geometric lattices, structures which provide the framework for the study of abstract linear independence, and obtain affine geometry from the mappings that preserve the closure operator that is associated with these lattices. These mappings are closely connected with semi-linear transformations on a vector space, and thus linear algebra and affine geometry are derived from the study of a certain closure operator and mappings which preserve it, even if the “space” is finite.


1970 ◽  
Vol 22 (3) ◽  
pp. 626-640 ◽  
Author(s):  
Charles Ford

Let ℭ be a finite group with a representation as an irreducible group of linear transformations on a finite-dimensional complex vector space. Every choice of a basis for the space gives the representing transformations the form of a particular group of matrices. If for some choice of a basis the resulting group of matrices has entries which all lie in a subfield K of the complex field, we say that the representation can be realized in K. It is well known that every representation of ℭ can be realized in some algebraic number field, a finitedimensional extension of the rational field Q.


Sign in / Sign up

Export Citation Format

Share Document