scholarly journals A numerical algorithm based on modified orthogonal linear spline for solving a coupled nonlinear inverse reaction-diffusion problem

Filomat ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 79-104
Author(s):  
Javad Alavi ◽  
Hossein Aminikhah

In this paper, a modified orthogonal linear spline (OL-spline) is used for the numerical solution of a coupled nonlinear inverse reaction-diffusion problem to determine the unknown boundary conditions. The convergence properties of the new linear combination are obtained. A quasi-linearization technique is utilized to linearize the nonlinear term in the equations. This process produces a linear system of equations which can be solved easily. Using the new inequalities, error estimation and convergence of the proposed method are investigated. Two numerical examples are given to demonstrate the computational efficiency of the method and also the experimental convergence rate of examples are obtained.

Author(s):  
Yogesh Jaluria

Abstract A common occurrence in many practical systems is that the desired result is known or given, but the conditions needed for achieving this result are not known. This situation leads to inverse problems, which are of particular interest in thermal processes. For instance, the temperature cycle to which a component must be subjected in order to obtain desired characteristics in a manufacturing system, such as heat treatment or plastic thermoforming, is prescribed. However, the necessary boundary and initial conditions are not known and must be determined by solving the inverse problem. Similarly, an inverse solution may be needed to complete a given physical problem by determining the unknown boundary conditions. Solutions thus obtained are not unique and optimization is generally needed to obtain results within a small region of uncertainty. This review paper discusses several inverse problems that arise in a variety of practical processes and presents some of the approaches that may be used to solve them and obtain acceptable and realistic results. Optimization methods that may be used for reducing the error are presented. A few examples are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. These examples include the heat treatment process, unknown wall temperature distribution in a furnace, and transport in a plume or jet involving the determination of the strength and location of the heat source by employing a few selected data points downstream. Optimization of the positioning of the data points is used to minimize the number of samples needed for accurate predictions.


2020 ◽  
Vol 28 (3) ◽  
pp. 147-160
Author(s):  
Andrea Bonito ◽  
Diane Guignard ◽  
Ashley R. Zhang

AbstractWe consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction–diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction–diffusion problems. The reduced basis does not depend on the fractional power s for 0 < smin ⩽ s ⩽ smax < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments.


2016 ◽  
Vol 16 (4) ◽  
pp. 609-631 ◽  
Author(s):  
Immanuel Anjam ◽  
Dirk Pauly

AbstractThe results of this contribution are derived in the framework of functional type a posteriori error estimates. The error is measured in a combined norm which takes into account both the primal and dual variables denoted by x and y, respectively. Our first main result is an error equality for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+x=f}$ or in mixed formulation ${\mathrm{A}^{*}y+x=f}$, ${\mathrm{A}x=y}$, where the exact solution $(x,y)$ is in $D(\mathrm{A})\times D(\mathrm{A}^{*})$. Here ${\mathrm{A}}$ is a linear, densely defined and closed (usually a differential) operator and ${\mathrm{A}^{*}}$ its adjoint. In this paper we deal with very conforming mixed approximations, i.e., we assume that the approximation ${(\tilde{x},\tilde{y})}$ belongs to ${D(\mathrm{A})\times D(\mathrm{A}^{*})}$. In order to obtain the exact global error value of this approximation one only needs the problem data and the mixed approximation itself, i.e., we have the equality$\lvert x-\tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-% \tilde{y}\rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}=\mathcal{M}(% \tilde{x},\tilde{y}),$where ${\mathcal{M}(\tilde{x},\tilde{y}):=\lvert f-\tilde{x}-\mathrm{A}^{*}\tilde{y}% \rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. Our second main result is an error estimate for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+ix=f}$ or in mixed formulation ${\mathrm{A}^{*}y+ix=f}$, ${\mathrm{A}x=y}$, where i is the imaginary unit. For this problem we have the two-sided estimate$\frac{\sqrt{2}}{\sqrt{2}+1}\mathcal{M}_{i}(\tilde{x},\tilde{y})\leq\lvert x-% \tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-\tilde{y}% \rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}\leq\frac{\sqrt{2}}{% \sqrt{2}-1}\mathcal{M}_{i}(\tilde{x},\tilde{y}),$where ${\mathcal{M}_{i}(\tilde{x},\tilde{y}):=\lvert f-i\tilde{x}-\mathrm{A}^{*}% \tilde{y}\rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. We will point out a motivation for the study of the latter problems by time discretizations or time-harmonic ansatz of linear partial differential equations and we will present an extensive list of applications including the reaction-diffusion problem and the eddy current problem.


Sign in / Sign up

Export Citation Format

Share Document