scholarly journals Some classical inequalities and their applications

Filomat ◽  
2021 ◽  
Vol 35 (7) ◽  
pp. 2165-2173
Author(s):  
Birgül Huban ◽  
Mehmet Gürdal ◽  
Havva Tilki

In this paper, we define analogies of classical H?lder-McCarthy and Young type inequalities in terms of the Berezin symbols of operators on a reproducing kernel Hilbert space H = H (?). These inequalities are applied in proving of some new inequalities for the Berezin number of operators. We also define quasi-paranormal and absolute-k-quasi paranormal operators and study their properties by using the Berezin symbols.

2019 ◽  
Vol 6 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Mojtaba Bakherad ◽  
Mubariz T. Garayev

Abstract The Berezin transform à of an operator A, acting on the reproducing kernel Hilbert space ℋ = ℋ (Ω) over some (non-empty) set Ω, is defined by Ã(λ) = 〉Aǩ λ, ǩ λ〈 (λ ∈ Ω), where ${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} _\lambda } = {{{k_\lambda }} \over {\left\| {{k_\lambda }} \right\|}}$ is the normalized reproducing kernel of ℋ. The Berezin number of an operator A is defined by ${\bf{ber}}{\rm{(}}A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} }_\lambda },{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} }_\lambda }} \right\rangle } \right|$ . In this paper, we prove some Berezin number inequalities. Among other inequalities, it is shown that if A, B, X are bounded linear operators on a Hilbert space ℋ, then $${\bf{ber}}(AX \pm XA) \leqslant {\bf{be}}{{\bf{r}}^{{1 \over 2}}}\left( {A*A + AA*} \right){\bf{be}}{{\bf{r}}^{{1 \over 2}}}\left( {X*X + XX*} \right)$$ and $${\bf{be}}{{\bf{r}}^2}({A^*}XB) \leqslant {\left\| X \right\|^2}{\bf{ber}}({A^*}A){\bf{ber}}({B^*}B).$$ We also prove the multiplicative inequality $${\bf{ber}}(AB){\bf{ber}}(A){\bf{ber}}(B)$$


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5711-5717 ◽  
Author(s):  
Ulaş Yamancı ◽  
Mehmet Gürdal ◽  
Mubariz Garayev

By using Hardy-Hilbert?s inequality, some power inequalities for the Berezin number of a selfadjoint operators in Reproducing Kernel Hilbert Spaces (RKHSs) with applications for convex functions are given.


Author(s):  
Ulaş Yamancı ◽  
Mehmet Gürdal

A reproducing kernel Hilbert space (shorty, RKHS) H=H(Ω) on some set Ω is a Hilbert space of complex valued functions on Ω such that for every λ∈Ω the linear functional (evaluation functional) f→f(λ) is bounded on H. If H is RKHS on a set Ω, then, by the classical Riesz representation theorem for every λ∈Ω there is a unique element kH,λ∈H such that f(λ)=〈f,kH,λ〉; for all f∈H. The family {kH,λ:λ∈Ω} is called the reproducing kernel of the space H. The Berezin set and the Berezin number of the operator A was respectively given by Karaev in [26] as following Ber(A)={A(λ):λ∈Ω} and ber(A):=|A(λ)|. In this chapter, the authors give the Berezin number inequalities for an invertible operator and some other related results are studied. Also, they obtain some inequalities of the slater type for convex functions of selfadjoint operators in reproducing kernel Hilbert spaces and examine related results.


Author(s):  
Michael T Jury ◽  
Robert T W Martin

Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $C^{\ast }-$algebra, the $C^{\ast }-$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $C^{\ast }-$algebras; any *−representation of the Cuntz–Toeplitz $C^{\ast }-$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory.


Author(s):  
Dominic Knoch ◽  
Christian R. Werner ◽  
Rhonda C. Meyer ◽  
David Riewe ◽  
Amine Abbadi ◽  
...  

Abstract Key message Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F1 hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.


Author(s):  
Fabio Sigrist

AbstractWe introduce a novel boosting algorithm called ‘KTBoost’ which combines kernel boosting and tree boosting. In each boosting iteration, the algorithm adds either a regression tree or reproducing kernel Hilbert space (RKHS) regression function to the ensemble of base learners. Intuitively, the idea is that discontinuous trees and continuous RKHS regression functions complement each other, and that this combination allows for better learning of functions that have parts with varying degrees of regularity such as discontinuities and smooth parts. We empirically show that KTBoost significantly outperforms both tree and kernel boosting in terms of predictive accuracy in a comparison on a wide array of data sets.


Sign in / Sign up

Export Citation Format

Share Document