scholarly journals Variable step-size LMS adaptive filters for CDMA multiuser detection

2004 ◽  
Vol 17 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Karen Egiazarian ◽  
Pauli Kuosmanen ◽  
Ciprian Bilcu

Due to its simplicity the adaptive Least Mean Square (LMS) algorithm is widely used in Code-Division Multiple access (CDMA) detectors. However its convergence speed is highly dependent on the eigen value spread of the input covariance matrix. For highly correlated inputs the LMS algorithm has a slow convergence which require long training sequences and therefore low transmission speeds. Another drawback of the LMS is the trade-off between convergence speed and steady-state error since both are controlled by the same parameter, the step-size. In order to eliminate these drawbacks, the class of Variable Step-Size LMS (VSSLMS) algorithms was introduced. In this paper, we study the behavior of some algorithms belonging to the class of VSSLMS for training based multiuser detection in a CDMA system. We show that the proposed Complementary Pair Variable Step-Size LMS algorithms highly increase the speed of convergence while reducing the trade-off between the convergence speed and the output error.

2019 ◽  
Vol 67 (6) ◽  
pp. 405-414 ◽  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Hui Guo ◽  
Bin Gao ◽  
...  

Active noise control (ANC) is used to reduce undesirable noise, particularly at low frequencies. There are many algorithms based on the least mean square (LMS) algorithm, such as the filtered-x LMS (FxLMS) algorithm, which have been widely used for ANC systems. However, the LMS algorithm cannot balance convergence speed and steady-state error due to the fixed step size and tap length. Accordingly, in this article, two improved LMS algorithms, namely, the iterative variable step-size LMS (IVS-LMS) and the variable tap-length LMS (VT-LMS), are proposed for active vehicle interior noise control. The interior noises of a sample vehicle are measured and thereby their frequency characteristics. Results show that the sound energy of noise is concentrated within a low-frequency range below 1000 Hz. The classical LMS, IVS-LMS and VT-LMS algorithms are applied to the measured noise signals. Results further suggest that the IVS-LMS and VT-LMS algorithms can better improve algorithmic performance for convergence speed and steady-state error compared with the classical LMS. The proposed algorithms could potentially be incorporated into other LMS-based algorithms (like the FxLMS) used in ANC systems for improving the ride comfort of a vehicle.


2014 ◽  
Vol 672-674 ◽  
pp. 2025-2028
Author(s):  
Shi Ping Zhang ◽  
Guo Qing Shen ◽  
Lian Suo An

Acoustic pyrometry is a comparatively advanced method of temperature measurement developed in recent years, which possesses the essential characteristics of traditional temperature measurement approach. Considering the interferences, like strong background noise, reverberation and so on, in boiler furnace, the LMS (least mean square) adaptive filter algorithm should be improved to meet certain environment above. In order to make the LMS algorithm have the characteristic of fast convergence and small steady state error, an improved, power-normalized and variable step-size discrete cosine transform LMS algorithm is proposed, which combines the power-normalized discrete cosine transform LMS algorithm with the variable step size LMS algorithm that uses the sliding forgetting-weighted window. The time delay estimation simulation in the strong-noise environment verifies the improved DCT-MVSS LMS algorithm can achieve good performance.


2018 ◽  
Vol 38 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Yubin Fang ◽  
Xiaojin Zhu ◽  
Zhiyuan Gao ◽  
Jiaming Hu ◽  
Jian Wu

The step size of least mean square (LMS) algorithm is significant for its performance. To be specific, small step size can get small excess mean square error but results in slow convergence. However, large step size may cause instability. Many variable step size least mean square (VSSLMS) algorithms have been developed to enhance the control performance. In this paper, a new VSSLMS was proposed based on Kwong’s algorithm to evaluate the robustness. The approximate analysis of dynamic and steady-state performance of this developed VSSLMS algorithm was given. An active vibration control system of piezoelectric cantilever beam was established to verify the performance of the VSSLMS algorithms. By comparing with the current VSSLMS algorithms, the proposed method has better performance in active vibration control applications.


2013 ◽  
Vol 475-476 ◽  
pp. 1060-1066
Author(s):  
X.Q. Chen ◽  
Hua Ju ◽  
Wei Fan ◽  
W.G. Huang ◽  
Z.K. Zhu

In many practical applications, the impulse responses of the unknown system are sparse. However, the standard Least Mean Square (LMS) algorithm does not make full use of the sparsity, and the general sparse LMS algorithms increase steady-state error because of giving much large attraction to the small factor. In order to improve the performance of sparse system identification, we propose a new algorithm which introduces a variable step size method into the Reweighted Zero-Attracting LMS (RZALMS) algorithm. The improved algorithm, whose step size adjustment is controlled by the instantaneous error, is called Variable step size RZALMS (V-RZALMS). The variable step size leads to yielding smaller steady-state error on the premise of higher convergent speed. Moreover, the sparser the system is, the better the V-RZALMS performs. Three different experiments are implemented to validate the effectiveness of our new algorithm.


2011 ◽  
Vol 268-270 ◽  
pp. 1168-1172
Author(s):  
Qing Feng Wang ◽  
Chuan Lin

A new variable step size LMS algorithm (CoLMS algorithm) based on two cooperative adaptive filters was proposed. In the CoLMS algorithm, the step size of each component filter was adjusted according to the comparison result of the two component filters’ performance at current stage. And the output of the better component adaptive filter was chosen as that of the overall adaptive filter. The CoLMS algorithm is not sensitive to the magnitude of the output noise and has a good tracking ability in the stationary or slowly changed environment. In order to further improve the tracking ability of CoLMS in abruptly changed environment, a modified CoLMS algorithm is also presented. The efficiency of the new algorithms is verified by the simulation results in system identification under the noises of different magnitudes.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250025
Author(s):  
VEENA N. HEGDE ◽  
RAVISHANKAR DEEKSHIT ◽  
P. S. SATYANARAYANA

This paper presents a new random noise cancellation technique for cancelling muscle artifact effects from ECG using ALE in the transformed domain. For this a transform domain variable step size griffith least mean square (TVGLMS) algorithm is proposed. The technique is based on the adaptation of the gradient of the error surface. The method frees both the step size and the gradient from observation noise and reduces the gradient mis-adjustment error. The sluggishness introduced due to the averaging of the gradient in the time domain is overcome by the transformed domain approach. The proposed algorithm uses a discrete cosine transform (DCT)-based signal decomposition due to its improved frequency resolution compared to a discrete Fourier transform (DFT). Furthermore, as the data used symmetrical, DCT usage results in low leakage (bias and variance). The performance of the proposed method has been tested on ECG signals combined with WGN, extracted from MIT database, and compared with several existing techniques like LMS, NLMS, and VGLMS.


2014 ◽  
Vol 602-605 ◽  
pp. 3593-3596 ◽  
Author(s):  
Li Liu ◽  
Qiong Wang ◽  
Hong Ping Bai

LMS (Least Mean Square) algorithm performance is analyzed. Then something has been done on SVSLMS that is an improved variable step size LMS algorithm based on sigmoid function. The improved algorithm has faster convergence rate, stronger channel tracking capability, better anti-noise performance and steady-state error performance compared with SVSLMS, for it makes parameters and change with channel characteristics. Theoretical analysis is the same as computer simulation results, which proves that the performance of the improved algorithm is superior to SVSLMS algorithm.


Author(s):  
T. Gowri ◽  
Rajesh Kumar P. ◽  
D.V.R. Koti Reddy

It is very important in remote cardiac diagnosis to extract pure ECG signal from the contaminated recordings of the signal. When recording the ECG signal in the laboratory, the signal is affected by numerous artifacts. Varies artifacts generally degrades the signal quality are PLI, EM, MA and EM. In addition to these, the channel noise also added when transmitting signal from remote location to diagnosis center for analyzing the signal. There are several approaches are used to reduce the noise present in the ECG signal. From the literature it is proven that compared to non adaptive filters, adaptive filters play vital role to trace the random changes in the corrupted signals. In this paper, we proposed efficient Variable step size leaky least mean fourth algorithm and its sign versions for reducing the complexity. These algorithms shows that it gives low steady state error due to least mean fourth and fast convergence rate that is it tracks the input signal quickly because of its variable step size is high at initial iterations of signal compared to the LMS algorithm. The performance of the algorithm is evaluated using SNR, frequency spectrum, MSE, misadjustment and convergence characteristics.


Sign in / Sign up

Export Citation Format

Share Document