scholarly journals Solubility of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols 400 or 600, propylene glycol and water at 298.2K - experimental data and modeling

2014 ◽  
Vol 79 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Zahra Bastami ◽  
Shahla Soltanpour ◽  
Vahid Panahi-Azar ◽  
Abolghasem Jouyban

Experimental molar solubilities of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols (PEGs) 400 or 600, propylene glycol (PG) and water (138 data points) along with the density of the saturated solutions at 298.2K were reported. The Jouyban-Acree model was used to fit to the measurements for providing a computational method. Employing the solubilities in the mono-solvents, the measured solubilities in mixed solvents were back-calculated and the overall mean percentage deviations (OMPDs) of the model were 16.0 % and 19.2% for diazepam and clonazepam, respectively. Addition of the Hansen solubility parameters to the model helps us to train all the data sets (clonazepam and diazepam) at once and the back-calculated OMPD for this analysis was 19.3%.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3091
Author(s):  
Mohammed Ghazwani ◽  
Prawez Alam ◽  
Mohammed H. Alqarni ◽  
Hasan S. Yusufoglu ◽  
Faiyaz Shakeel

This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy–entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2–318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van’t Hoff, Apelblat, Buchowski–Ksiazczak λh, Yalkowsly–Roseman, Jouyban–Acree, and van’t Hoff–Jouyban–Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10−2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10−6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Faiyaz Shakeel ◽  
Md. Khalid Anwer ◽  
Nazrul Haq ◽  
Ibrahim A. Alsarra

AbstractThe solubilization, Hansen solubility parameters (HSPs) and apparent thermodynamic parameters of a novel anticancer medicine osimertinib (OMT) in binary propylene glycol (P) + water (W) cosolvent mixtures were evaluated. The mole fraction solubility (xe) of OMT in various (P + W) cosolvent mixtures including neat P and neat W was determined at T = 298.2–318.2 K and p = 0.1 MPa by applying a saturation shake flask method. HSPs of OMT, neat P, neat W and (P + W) cosolvent compositions free of OMT were also estimated. The xe values of OMT were regressed with Van’t Hoff, modified Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models with an average errors of <3.0 %. The highest and lowest xe value of OMT was estimated in neat P (2.70 × 10−3 at T = 318.2 K) and neat W (1.81 × 10−5 at T = 298.2 K), respectively. Moreover, HSP of OMT was found to be closed with that of neat P. The solubility of OMT was found to be increased significantly with an increase in temperature and P mass fraction in all (P + W) cosolvent compositions including neat P and neat W. The results of activity coefficients suggested higher molecular interactions in OMT-P combination compared with OMT-W combination. The results of thermodynamic studies indicated an endothermic and entropy-driven dissolution of OMT in all (P + W) cosolvent compositions including neat P and neat W.


2021 ◽  
Author(s):  
Bihua Chen ◽  
Man Wang ◽  
Xin Wang ◽  
Qi Zhao ◽  
Yingxiong Wang ◽  
...  

The molar swelling ratio and enrichment factor of poly(ionic liquid)s were linearly positively correlated with the Hansen solubility parameter of the solvent and the difference between the Hansen solubility parameters of mixed solvents, respectively.


2011 ◽  
Vol 56 (12) ◽  
pp. 4352-4355 ◽  
Author(s):  
Somaieh Ahmadian ◽  
Vahid Panahi-Azar ◽  
Mohammad A. A. Fakhree ◽  
William E. Acree ◽  
Abolghasem Jouyban

Sign in / Sign up

Export Citation Format

Share Document