scholarly journals On duality mapping and canonical isometry of a normed space

Author(s):  
Pavle Milicic
Keyword(s):  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Tawfeek ◽  
Nashat Faried ◽  
H. A. El-Sharkawy

AbstractWe generalize the concepts of normalized duality mapping, J-orthogonality and Birkhoff orthogonality from normed spaces to smooth countably normed spaces. We give some basic properties of J-orthogonality in smooth countably normed spaces and show a relation between J-orthogonality and metric projection on smooth uniformly convex complete countably normed spaces. Moreover, we define the J-dual cone and J-orthogonal complement on a nonempty subset S of a smooth countably normed space and prove some basic results about the J-dual cone and the J-orthogonal complement of S.


1992 ◽  
Vol 15 (3) ◽  
pp. 417-423
Author(s):  
C.-S. Lin

In this paper a new duality mapping is defined, and it is our object to show that there is a similarity among these three types of characterizations of a strictly convex2-normed space. This enables us to obtain more new results along each of two types of characterizations. We shall also investigate a strictly2-convex2-normed space in terms of the above two different types.


2020 ◽  
Vol 53 (1) ◽  
pp. 174-192
Author(s):  
Anurak Thanyacharoen ◽  
Wutiphol Sintunavarat

AbstractIn this article, we prove the generalized Hyers-Ulam stability for the following additive-quartic functional equation:f(x+3y)+f(x-3y)+f(x+2y)+f(x-2y)+22f(x)+24f(y)=13{[}f(x+y)+f(x-y)]+12f(2y),where f maps from an additive group to a complete non-Archimedean normed space.


Author(s):  
Harald Fripertinger ◽  
Jens Schwaiger

AbstractIt was proved in Forti and Schwaiger (C R Math Acad Sci Soc R Can 11(6):215–220, 1989), Schwaiger (Aequ Math 35:120–121, 1988) and with different methods in Schwaiger (Developments in functional equations and related topics. Selected papers based on the presentations at the 16th international conference on functional equations and inequalities, ICFEI, Bȩdlewo, Poland, May 17–23, 2015, Springer, Cham, pp 275–295, 2017) that under the assumption that every function defined on suitable abelian semigroups with values in a normed space such that the norm of its Cauchy difference is bounded by a constant (function) is close to some additive function, i.e., the norm of the difference between the given function and that additive function is also bounded by a constant, the normed space must necessarily be complete. By Schwaiger (Ann Math Sil 34:151–163, 2020) this is also true in the non-archimedean case. Here we discuss the situation when the bound is a suitable non-constant function.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 897 ◽  
Author(s):  
Fernando León-Saavedra ◽  
Francisco Javier Pérez-Fernández ◽  
María del Pilar Romero de la Rosa ◽  
Antonio Sala

We aim to unify several results which characterize when a series is weakly unconditionally Cauchy (wuc) in terms of the completeness of a convergence space associated to the wuc series. If, additionally, the space is completed for each wuc series, then the underlying space is complete. In the process the existing proofs are simplified and some unanswered questions are solved. This research line was originated in the PhD thesis of the second author. Since then, it has been possible to characterize the completeness of a normed spaces through different convergence subspaces (which are be defined using different kinds of convergence) associated to an unconditionally Cauchy sequence.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Songnian He ◽  
Jun Guo

LetCbe a nonempty closed convex subset of a real uniformly smooth Banach spaceX,{Tk}k=1∞:C→Can infinite family of nonexpansive mappings with the nonempty set of common fixed points⋂k=1∞Fix⁡(Tk), andf:C→Ca contraction. We introduce an explicit iterative algorithmxn+1=αnf(xn)+(1-αn)Lnxn, whereLn=∑k=1n(ωk/sn)Tk,Sn=∑k=1nωk,  andwk>0with∑k=1∞ωk=1. Under certain appropriate conditions on{αn}, we prove that{xn}converges strongly to a common fixed pointx*of{Tk}k=1∞, which solves the following variational inequality:〈x*-f(x*),J(x*-p)〉≤0,    p∈⋂k=1∞Fix(Tk), whereJis the (normalized) duality mapping ofX. This algorithm is brief and needs less computational work, since it does not involveW-mapping.


2017 ◽  
Vol 26 (3) ◽  
pp. 281-287
Author(s):  
RAMAZAN KAMA ◽  
◽  
BILAL ALTAY ◽  

In this paper we introduce new sequence spaces obtained by series in normed spaces and Cesaro summability method. We prove that completeness ´ and barrelledness of a normed space can be characterized by means of these sequence spaces. Also we establish some inclusion relationships associated with the aforementioned sequence spaces.


Sign in / Sign up

Export Citation Format

Share Document