scholarly journals Ruled three-dimensional CR submanifolds of the sphere S6(1)

2017 ◽  
Vol 101 (115) ◽  
pp. 25-35 ◽  
Author(s):  
Miroslava Antic

We investigate proper, three-dimensional CR submanifolds of the nearly Kahler sphere S6(1) ruled by totally geodesic spheres S2(1), and classify them by using a sphere curve and a vector field along that curve.

2018 ◽  
Vol 68 (5) ◽  
pp. 1129-1140
Author(s):  
Miroslava Antić

Abstract We investigate four-dimensional CR submanifolds in six-dimensional strict nearly Kähler manifolds. We construct a moving frame that nicely corresponds to their CR structure and use it to investigate CR submanifolds that admit a special type of doubly twisted product structure. Moreover, we single out a class of CR submanifolds containing this type of doubly twisted submanifolds. Further, in a particular case of the sphere $ \mathbb{S}^{6}(1) $, we show that the two families of four-dimensional CR submanifolds, those that admit a three-dimensional geodesic distribution and those ruled by totally geodesic spheres $ \mathbb{S}^{3} $ coincide, and give their classification, which as a subfamily contains a family of doubly twisted CR submanifolds.


2009 ◽  
Vol 20 (02) ◽  
pp. 189-208 ◽  
Author(s):  
MIRJANA DJORIĆ ◽  
LUC VRANCKEN

In this paper, we study certain three-dimensional CR-submanifolds M of the nearly Kähler 6-dimensional sphere S6(1). It is well known that there does not exist a three-dimensional totally geodesic proper CR-submanifold in S6(1). In this paper we obtain a classification of the 3-dimensional CR-submanifolds which are the closest possible to totally geodesic submanifolds, i.e. those that admit a one-dimensional nullity distribution.


2018 ◽  
Vol 198 (1) ◽  
pp. 227-242 ◽  
Author(s):  
Miroslava Antić ◽  
Nataša Djurdjević ◽  
Marilena Moruz ◽  
Luc Vrancken

2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


Author(s):  
Paul Walker ◽  
Ulrich Krohn ◽  
Carty David

ARBTools is a Python library containing a Lekien-Marsden type tricubic spline method for interpolating three-dimensional scalar or vector fields presented as a set of discrete data points on a regular cuboid grid. ARBTools was developed for simulations of magnetic molecular traps, in which the magnitude, gradient and vector components of a magnetic field are required. Numerical integrators for solving particle trajectories are included, but the core interpolator can be used for any scalar or vector field. The only additional system requirements are NumPy.


Author(s):  
L. Vanhecke ◽  
T. J. Willmore

SynopsisThis is a contribution to the general problem of determining the extent to which the geometry of a riemannian manifold is determined by properties of its geodesic spheres. In particular we show that total umbilicity of geodesic spheres determines riemannian manifolds of constant sectional curvature; quasi-umbilicity of geodesic spheres determines Kähler and nearly-Kähler manifolds of constant holomorphic sectional curvature; and the condition that geodesic spheres have only two different principal curvatures, one having multiplicity 3, determines manifolds locally isometric to the quaternionic projective spaces. The use of Jacobi vector fields leads to a unified treatment of these different cases.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1160
Author(s):  
Elsa Ghandour ◽  
Luc Vrancken

The space S L ( 2 , R ) × S L ( 2 , R ) admits a natural homogeneous pseudo-Riemannian nearly Kähler structure. We investigate almost complex surfaces in this space. In particular, we obtain a complete classification of the totally geodesic almost complex surfaces and of the almost complex surfaces with parallel second fundamental form.


Sign in / Sign up

Export Citation Format

Share Document