Integral vector field control for three-dimensional path following of autonomous underwater vehicle

Author(s):  
Xuliang Yao ◽  
Xiaowei Wang
Author(s):  
Mohammad Saghafi ◽  
Roham Lavimi

In this research, the flow around the autonomous underwater vehicles with symmetrical bodies is numerically investigated. Increasing the drag force in autonomous underwater vehicles increases the energy consumption and decreases the duration of underwater exploration and operations. Therefore, the main objective of this research is to decrease drag force with the change in geometry to reduce energy consumption. In this study, the decreasing or increasing trends of the drag force of axisymmetric bare hulls have been studied by making alterations in the curve equations and creating the optimal geometric shapes in terms of hydrodynamics for the noses and tails of autonomous underwater vehicles. The incompressible, three-dimensional, and steady Navier–Stokes equations have been used to simulate the flow. Also, k-ε Realizable with enhanced wall treatment was used for turbulence modeling. Validation results were acceptable with respect to the 3.6% and 1.4% difference with numerical and experimental results. The results showed that all the autonomous underwater vehicle hulls designed in this study, at an attack angle of 0°, had a lower drag force than the autonomous underwater vehicle hull used for validation except geometry no. 1. In addition, nose no. 3 has been selected as the best nose according to the lowest value of stagnation pressure, and also tail no. 3 has been chosen as the best tail due to the production of the lowest vortex. Therefore, geometry no. 5 has been designed using nose and tail no. 3. The comparison made here showed that the maximum drag reduction in geometry no. 5 was equal to 26%, and therefore, it has been selected as the best bare hull in terms of hydrodynamics.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4987 ◽  
Author(s):  
Xu ◽  
Zhang ◽  
Cao ◽  
Pang ◽  
Sun

The three-dimensional (3D) path following problem of an underactuated autonomous underwater vehicle with ocean currents disturbances is addressed in this paper. Firstly, the motion equation under the ocean currents disturbance is established, and the dynamic model of 3D tracking error is constructed based on virtual guidance method. Then, a finite-time control scheme based on super-twisting observer and command filtered backstepping technology is proposed. We adopt super-twisting observer based on finite-time theory to observe the ocean currents disturbances for improving the system robust. A command filtered backstepping is proposed to replace the differential process in the conventional backstepping method for avoiding the differential expansion problem. The filter compensation loop is designed to ensure the accuracy of the filtered signal, and the anti-integration saturation link is designed considering the influence of integral saturation. Lyapunov stability theory is used to prove the stability of the underactuated AUV. Simulation studies are conducted to show the effectiveness and robustness of the controller.


Author(s):  
Tian Chen ◽  
Zheng Zewei ◽  
MIng Zhu ◽  
Zhe Wu

2014 ◽  
Vol 568-570 ◽  
pp. 917-921
Author(s):  
Hong Bin Zhang ◽  
Jian Yuan

The modelling method of a full-actuated autonomous underwater vehicle is investigated.The kinematics and dynamics models of the full-actuated autonomous underwater vehicle in three-dimensional space are constructed. Gravity and moment of gravity,current resistance and moment of resistance, buoyancy and moment of buoyancy and thrust and moment of thrust are constructed, respectively. Experiment results show the effectiveness of the proposed modelling method.


2016 ◽  
Vol 39 (8) ◽  
pp. 1236-1252 ◽  
Author(s):  
Basant Kumar Sahu ◽  
Bidyadhar Subudhi

This paper presents the development of simple but powerful path-following and obstacle-avoidance control laws for an underactuated autonomous underwater vehicle (AUV). Potential function-based proportional derivative (PFPD) as well as a potential function-based augmented proportional derivative (PFAPD) control laws are developed to govern the motion of the AUV in an obstacle-rich environment. For obstacle avoidance, a mathematical potential function is used, which formulates the repulsive force between the AUV and the solid obstacles intersecting the desired path. Numerical simulations are carried out to study the efficacy of the proposed controllers and the results are observed. To reduce the values of the overshoots and steady-state errors identified due to the application of PFPD controller a PFAPD controller is designed that drives the AUV along the desired trajectory. From the simulation results, it is observed that the proposed controllers are able to drive the AUV to track the desired path, avoiding the obstacles in an obstacle-rich environment. The results are compared and it is observed that the PFAPD outperforms the PFPD to drive the AUV along the desired trajectory. It is also proved that it is not necessary to employ highly complicated controllers for solving obstacle-avoidance and path-following problems of underactuated AUVs. These problems can be solved with the application of PFAPD controllers.


2012 ◽  
Vol 9 (2) ◽  
pp. 135-152 ◽  
Author(s):  
Sreekar Gomatam ◽  
S Vengadesan ◽  
S K Bhattacharyya

Three dimensional (3D) flow past an Autonomous Underwater Vehicle (AUV) is simulated using a Computational Fluid Dynamics (CFD) approach at a Reynolds (Re) number of 2.09x106. A non-linear k-? (NLKE) turbulence model is used for solving the Reynolds Averaged Navier-Stokes (RANS) equations. The effect of control surfaces over the flow, the flow interaction between the hull and the appendages at various Angles of Attack (AoA) and the effect of the symmetry plane is studied. Flow structure, variation of flow variables and force distribution for various AoA are presented and discussed in detail.DOI: http://dx.doi.org/10.3329/jname.v9i2.12567 Journal of Naval Architecture and Marine Engineering 9(2012) 135-152


Sign in / Sign up

Export Citation Format

Share Document