scholarly journals Symmetries in central-force problems

2003 ◽  
pp. 47-52 ◽  
Author(s):  
V. Mioc ◽  
M. Barbosu

The two-body problem in central fields (reducible to a central-force problem) models a lot of concrete astronomical situations. The corresponding vector fields (in Cartesian and polar coordinates, extended via collision-blow-up and infinity-blow-up transformations) exhibit nice symmetries that form eight-element Abelian groups endowed with an idempotent structure. All these groups are isomorphic, which is not a trivial result, given the different structures of the corresponding phase spaces. Each of these groups contains seven four-element subgroups isomorphic to Klein?s group. These symmetries are of much help in understanding various characteristics of the global flow of the general problem or of a concrete problem at hand, and are essential in searching for periodic orbits.

2002 ◽  
pp. 1-8
Author(s):  
V. Mioc

The two-body problem associated with a force field described by a potential of the form U =Sum(k=1,n) ak/rk (r = distance between particles, ak = real parameters) is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita?s coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.


Author(s):  
Zhouqian Miao ◽  
Nikola Popović ◽  
Thomas Zacharis

AbstractWe consider a two-body problem with quick loss of mass which was formulated by Verhulst (Verhulst in J Inst Math Appl 18: 87–98, 1976). The corresponding dynamical system is singularly perturbed due to the presence of a small parameter in the governing equations which corresponds to the reciprocal of the initial rate of loss of mass, resulting in a boundary layer in the asymptotics. Here, we showcase a geometric approach which allows us to derive asymptotic expansions for the solutions of that problem via a combination of geometric singular perturbation theory (Fenichel in J Differ Equ 31: 53–98, 1979) and the desingularization technique known as “blow-up” (Dumortier, in: Bifurcations and Periodic Orbits of Vector Fields, Springer, Dordrecht, 1993). In particular, we justify the unexpected dependence of those expansions on fractional powers of the singular perturbation parameter; moreover, we show that the occurrence of logarithmic (“switchback”) terms therein is due to a resonance phenomenon that arises in one of the coordinate charts after blow-up.


2003 ◽  
pp. 43-46 ◽  
Author(s):  
V. Mioc ◽  
M. Barbosu

We tackle the two-body problem associated to H?non-Heiles? potential in the special case of the collision singularity. Using McGehee-type transformations of the second kind, we blow up the singularity and replace it by the collision manifold Mc pasted on the phase spece. We fully describe the flow on Mc. This flow is similar to analogous flows met in post-Newtonian two-body problems.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter embarks on a study of the two-body problem in general relativity. In other words, it seeks to describe the motion of two compact, self-gravitating bodies which are far-separated and moving slowly. It limits the discussion to corrections proportional to v2 ~ m/R, the so-called post-Newtonian or 1PN corrections to Newton’s universal law of attraction. The chapter first examines the gravitational field, that is, the metric, created by the two bodies. It then derives the equations of motion, and finally the actual motion, that is, the post-Keplerian trajectories, which generalize the post-Keplerian geodesics obtained earlier in the chapter.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.


1990 ◽  
Vol 165 (1) ◽  
pp. 95-99
Author(s):  
Ana Nunes ◽  
Josefina Casasayas

2011 ◽  
Author(s):  
A. A. Kosti ◽  
Z. A. Anastassi ◽  
T. E. Simos ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document