scholarly journals Application of different light sources for polymerization of restorative resins

2002 ◽  
Vol 49 (3-4) ◽  
pp. 95-100 ◽  
Author(s):  
Larisa Blazic ◽  
Slavoljub Zivkovic ◽  
Ivana Stojsin

The aim of this work was the introduction of the basic characteristics of contemporary polymerization light sources for composite resin curing. Two basic groups of available curing technologies are introduced. First are those that produce white light (conventional halogen lamps and plasma arc polymerization units). The second group comprises "blue light" curing devices that produce blue light at the origin of the light source. Lights belonging to this group include the blue LEDs and argon laser. Information about main characteristics of light sources (irradiance, wavelength range) and their proper choice could have a significant impact on polymerization quality and on long-life of composite restoration.

2020 ◽  
Vol 32 (1) ◽  
pp. 9-15
Author(s):  
Bahar J Selivany ◽  
Muhand A Khadim ◽  
Dara H Saeed ◽  
Abdulhaq A Suliman

Background: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal then restored with Filtek® Z350 (3M ESPE, USA). In the vibration group, condensation was done using CompothixoTM (Kerr, Switzerland). In the conventional group, condensation was done with hand plugger. Curing modes for all groups were LED-Ramp, LED-Fast and halogen continuous modes, respectively. Samples stored in distilled water at 37°C for seven days, and painted completely with two layers of nail varnish with only 1 mm around the composite restoration left. Samples were thermocycled, immersed in 2% methylene blue solution for 3 hours, and sectioned longitudinally. Dye penetration was assessed under a stereomicroscope. Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests with p <0.05 considered significant. Results: Vibration group showed less microleakage (P=0.028). In the conventional group there were no differences by using different curing modes (P=0.277). In the vibration group no differences were found between LED-Ramp and LED-Fast mode (P=0.989). However, there were significant differences between LED-Fast and halogen (P=0.05) and between LED-Ramp and halogen group (P=0.001). Microleakage scores of all cervical walls were higher than the occlusal walls (P=0.001). Occlusal walls leakage for conventional and vibration groups were not different (P=0.475), while there were significant differences between them at cervical walls (P=0.001). Conclusion: Vibration with LED-Ramp curing mode may decrease marginal leakage of composite restoration placed in Standard Class V tooth preparations. Keywords: Composite resin, Vibration, Condensation, Compothixo, Microleakage,


2020 ◽  
Author(s):  
Ebaa Ibrahim Alagha ◽  
Mustafa Ibrahim Alagha

Abstract Background This study evaluated the influence of two light sources on the microhardness of two recent composite resins.Methods A total of one hundred and twenty specimens were prepared and divided into two groups according to the composite resin restoration used (Tetric EvoCeram Bulkfill) and (Universal Nanohybrid Mosaic). Each group was subdivided into four subgroups according to the light source used with different curing intervals: laser curing system (SIROLaser) for 10,15, and 20 seconds and conventional blue light system (LED) for 20 seconds. Microhardness testing machine was used to assess the microhardness. Two-way ANOVA was done for comparing resin composite and curing energy effect on different variable studied. One-way ANOVA followed by pair-wise Tukey’s post-hoc tests were performed to detect significance between each composite subgroups and t-test for subgroups. P values ≤ 0.05 are considered statistically significant in all tests.Results LED cured Tetric EvoCeram Bulkfill composite resin recorded higher B/T ratio than laser cured one and the difference in B/T ratio between both energies was statistically non-significant. LED cured Mosaic composite resin recorded higher B/T ratio than laser cured one. The difference in B/T ratio between both energies was statistically significant.Conclusion SIROLaser Blue laser device has been promoted for composite resin curing with different curing intervals, but the high cost and technique sensitivity result in their limited use. Clinical Significance: Different types of curing systems are present in the dental practice. The use of SIROLaser Blue laser to photopolymerize composite resin will offers proper polymerization properties.


2016 ◽  
Vol 10 (1) ◽  
pp. 538-545 ◽  
Author(s):  
Ayob Pahlevan ◽  
Masumeh Hasani Tabatabaei ◽  
Sakineh Arami ◽  
Sara Valizadeh

Objectives:Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights.Materials and Methods:DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance).Results:The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units.Conclusion:Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.


2006 ◽  
Vol 14 (1) ◽  
pp. 10-15 ◽  
Author(s):  
André Luiz Fraga Briso ◽  
Tânia Maria Fedel ◽  
Sibéria de Morais Pereira ◽  
Sílvio José Mauro ◽  
Renato Herman Sundfeld ◽  
...  

INTRODUCTION: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. PURPOSE: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3) of composite resin Filtek Z-250 (3M ESPE) after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante) and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE). METHODS: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. RESULTS: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. CONCLUSION: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26415-26420
Author(s):  
Yue Yao ◽  
Si-Wei Zhang ◽  
Zijian Liu ◽  
Chun-Yun Wang ◽  
Ping Liu ◽  
...  

A Bi3+-doped Cs2SnCl6 exhibits photoluminescence at around 456 nm and a photoluminescence quantum yield of 31%. The blue LED based on the Bi3+-doped Cs2SnCl6 phosphor exhibits a long life of 120 hours and a CIE color coordinates of (0.14, 0.11).


2018 ◽  
Vol 89 (10) ◽  
pp. 1964-1974
Author(s):  
Yi Huang ◽  
Guangdong Sun ◽  
Yating Ji ◽  
Dapeng Li ◽  
Qinguo Fan ◽  
...  

A blue light curing process was developed to solve the nozzle clogging challenge commonly encountered in conventional textile pigment printing, by using camphorquinone (CQ) and ethyl-4-dimethylaminobenzoate (EDMAB) as a photoinitiator combination and substituting oligomers and monomers for a polymeric binder. High light absorption efficiency was insured by closely matching the spectrum of the photoinitiator with a custom-made blue light light-emitting diode set-up. Kinetic analyses of such a CQ/EDMAB system indicated that the maximum polymerization rate of the monomer was proportional to [PI]0.5 and [I0]0.5, while excessive high photoinitiator concentration (>1 wt%) will decrease the polymerization rate because of the “filter effect.” With optimized blue light curable pigment ink formula and irradiation conditions, the photocurable pigment printed fabrics exhibited uniform and vibrant colors, clear outlines, and excellent wet and dry rubbing fastness of grades 4 and 4–5, respectively.


Sign in / Sign up

Export Citation Format

Share Document