wall deflection
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lanting Wu ◽  
Jianping Sun ◽  
Yuqiang Tong

Deep excavation supported by vertical retaining walls together with strutting system is commonly used in Singapore for the construction of underground infrastructure. In this paper, a series of numerical scenarios simulated by PLAXIS software are carried out to study the influence of different design parameters such as pre-auger loosening effect, the embedded depth of retaining wall into the stiff soil layer, and the elastic modulus of the ground improvement layer on excavation design especially on strut force, retaining wall deflection, and bending moment. The results show that there is high risk if only a single set of parameters are used as input to predict the performance of the retaining system. Sensitivity analysis shall be carried out to evaluate the effects of these parameter variations within a reasonable range on strut force, retaining wall deflection, and bending moment.


2021 ◽  
Vol 11 (20) ◽  
pp. 9760
Author(s):  
Zhongkai Huang ◽  
Dongmei Zhang ◽  
Dongming Zhang

The main objective of this study is to propose an artificial neural network (ANN)-based tool for predicting the cantilever wall deflection in undrained clay. The excavation width, the excavation depth, the wall thickness, the at-rest lateral earth pressure coefficient, the soil shear strength ratio at mid-depth of the wall, and the soil stiffness ratio at mid-depth of the wall were selected as the input parameters, whereas the cantilever wall deflection was selected as an output parameter. A set of verified numerical data were utilized to train, test, and validate the ANN models. Two commonly used performance indicators, namely, root mean square error (RMSE) and mean absolute error (MAE), were selected to evaluate the performance of the proposed model. The results indicated that the proposed model can reliably predict the cantilever wall deflection in undrained clay. Moreover, the sensitivity analysis showed that the excavation depth is the most important parameter. Finally, a graphical user interface (GUI) tool was developed based on the proposed ANN model, which is much easier and less expensive to be used in practice. The results of this study can help engineers to better understand and predict the cantilever wall deflection in undrained clay.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Khalid R. Aljanabi ◽  
Osamah M. AL-Azzawi

AbstractAn attempt was carried out by using a neural network to predict the maximum deflection and its position caused by braced excavation in homogeneous clay. Six input variables, including excavation depth, Ratio of EI wall/EI of brace, the vertical distance between bracing, Length to width ratio of an excavation, shear strength, and the coefficient of lateral earth pressure, were adopted. Two models were developed, one is to estimate the maximum deflection and the other one to estimate the position of maximum deflection. The ANN models were developed and verified using a database of (169) cases of actual measured and presumptive cases using the analysis with the Finite element of maximum deflection. A sensitivity analysis was accomplished, to examine the relative significance of the parameters that influence the maximum deflection of the wall and its position; it indicates that the Ratio of EI wall/EI of brace has the most significant effect on the maximum wall deflection, while the properties of the soil have the most considerable effects on the position. The results show that the ANN can reasonably forecast the magnitude of the maximum deflection of the wall, as well as its position. Design charts are developed based on the ANN model.


2021 ◽  
pp. 99-171
Author(s):  
Wengang Zhang ◽  
Hanlong Liu

2021 ◽  
Vol 7 (3) ◽  
pp. 253
Author(s):  
Anthonius Steven Sutanto ◽  
Paulus Pramono Rahardjo ◽  
Aswin Lim

Pre-stressed ground anchor systems or tieback systems are commonly used at wide and irregular-shaped excavations, with the advantage of lower cost and ease of construction compared to the braced excavations, but they come with the drawback on permits for excavations near buildings and tunnels. Research on tieback systems in sands was generally conducted. However, the studies on the correlation between the retaining wall deflection and pre-stress force are few. The objectives of this paper are to study the influence of pre-stress force, depth of excavation, wall embedment length, and soil shear strength that is represented by soil friction angle on the deflection and soil pressure acting on the retaining wall. The parametric study was conducted on an excavation in sand using the finite element method with the Hardening soil model. The results showed that a 50 kN/m increase in pre-stress force reduced the wall deflection on top of the wall by 0.005–0.083% of excavation depth. However, the pre-stressing influence in reducing wall deflection at excavations became less significant along with the sand density increase due to higher friction angle contribution to excavation stability. Moreover, the pre-stress force needed for stabilization of the wall with long embedment length is smaller than those on the wall with shorter embedment length, since the embedment length increase of 0.25 times of excavation depth reduces wall top deflection by 0.002–0.095% of excavation depth. Also, the increase of soil density reduces the need for wall embedment length, so at dense sand, the embedment length of 0.5 times of excavation depth is sufficient to support the excavation.


Checking and calculating the stability of retaining walls and deep excavation are required in the design and construction of subterranean structures, particularly the DW500 reinforced concrete Wall-Plate. This is one of the most significant approaches to preventing landslides and settlement for buildings in the immediate vicinity. In fact, calculating and forecasting the DW500 retainer wall's stability and determining the influent area can provide a variety of options for reducing reinforced frame parts (retaining wall and shoring). This technology is now being explored and used for the most realistic structures in Vietnam, particularly in Ho Chi Minh City. This article uses the finite element technique (FEM –Plaxis 2D-2019) to calculate the lateral displacements, shoring, and outer foundation for the DW500 retaining wall.


Sign in / Sign up

Export Citation Format

Share Document