scholarly journals Two-phase deformations within the framework of phase transition zones

2002 ◽  
pp. 145-168 ◽  
Author(s):  
A.B. Freidin ◽  
E.N. Vilchevskaya ◽  
L.L. Sharipova

We analyze conditions on the equilibrium interface and develop the concept of phase transition zones (PTZ) formed in strain-space by all deformations which can exist on the equilibrium interface. The importance of the PTZ construction follows from the fact that deformations outside the PTZ cannot exist on the interface, whatever the loading conditions. The PTZ boundary acts as a phase diagram or yield surface in strain-space. We develop a general procedure for the PTZ construction and give examples for various nonlinear elastic materials and in a case of small strains. We study orientations of the interface and jumps of strains on the interface and demonstrate that various points of the PTZ correspond to different types of strain localization due to phase transformations on different loading path. .

2006 ◽  
Vol 43 (14-15) ◽  
pp. 4484-4508 ◽  
Author(s):  
A.B. Freidin ◽  
Y.B. Fu ◽  
L.L. Sharipova ◽  
E.N. Vilchevskaya

2013 ◽  
Vol 20 (2) ◽  
pp. 179-194 ◽  
Author(s):  
Gokhan Omeroglu ◽  
Omer Gomakh ◽  
Sendogan Karagoz ◽  
Suleyman Karsli

2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1543
Author(s):  
Luka Sturtewagen ◽  
Erik van der Linden

The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid–liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.


1999 ◽  
Vol 578 ◽  
Author(s):  
T. Hoc ◽  
C. Rey

AbstractStrain localization in mild steel submitted to a sequential loading paths is investigated at macroscopic, mesoscopic and microscopic scales. The experimental results demonstrate that the morphology of the localization and the nominal load-displacement curves depend on the microstructural anisotropy. A crystalline model using a finite element code is proposed. The anisotropy is described by a hardening matrix whose terms correspond to dislocation-dislocation interactions and depend on the evolution of the dislocation densities on the activated slip systems during the sequential tests. The strain localization predicted by this model fits with the experimental observation and allows us to assume that localization is correlated to the saturation on the activated slip systems.


2021 ◽  
pp. 1-20
Author(s):  
Anthony M.T. Bell ◽  
Francis Clegg ◽  
Christopher M.B. Henderson

Abstract Hydrothermally synthesised K2ZnSi5O12 has a polymerised framework structure with the same topology as leucite (KAlSi2O6, tetragonal I41/a), which has two tetrahedrally coordinated Al3+ cations replaced by Zn2+ and Si4+. At 293 K it has a cation-ordered framework P21/c monoclinic structure with lattice parameters a = 13.1773(2) Å, b = 13.6106(2) Å, c = 13.0248(2) Å and β = 91.6981(9)°. This structure is isostructural with K2MgSi5O12, the first cation-ordered leucite analogue characterised. With increasing temperature, the P21/c structure transforms reversibly to cation-ordered framework orthorhombic Pbca. This transition takes place over the temperature range 848−863 K where both phases coexist; there is an ~1.2% increase in unit cell volume between 843 K (P21/c) and 868 K (Pbca), characteristic of a first-order, displacive, ferroelastic phase transition. Spontaneous strain analysis defines the symmetry- and non-symmetry related changes and shows that the mechanism is weakly first order; the two-phase region is consistent with the mechanism being a strain-related martensitic transition.


2013 ◽  
Vol 29 (6) ◽  
pp. 1343-1353 ◽  
Author(s):  
João Vitor Dutra Molino ◽  
Daniela de Araújo Viana Marques ◽  
Adalberto Pessoa Júnior ◽  
Priscila Gava Mazzola ◽  
Maria Silvia Viccari Gatti

Sign in / Sign up

Export Citation Format

Share Document