scholarly journals Spherically symmetric two-phase deformations and phase transition zones

2006 ◽  
Vol 43 (14-15) ◽  
pp. 4484-4508 ◽  
Author(s):  
A.B. Freidin ◽  
Y.B. Fu ◽  
L.L. Sharipova ◽  
E.N. Vilchevskaya
2002 ◽  
pp. 145-168 ◽  
Author(s):  
A.B. Freidin ◽  
E.N. Vilchevskaya ◽  
L.L. Sharipova

We analyze conditions on the equilibrium interface and develop the concept of phase transition zones (PTZ) formed in strain-space by all deformations which can exist on the equilibrium interface. The importance of the PTZ construction follows from the fact that deformations outside the PTZ cannot exist on the interface, whatever the loading conditions. The PTZ boundary acts as a phase diagram or yield surface in strain-space. We develop a general procedure for the PTZ construction and give examples for various nonlinear elastic materials and in a case of small strains. We study orientations of the interface and jumps of strains on the interface and demonstrate that various points of the PTZ correspond to different types of strain localization due to phase transformations on different loading path. .


2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


2021 ◽  
pp. 1-20
Author(s):  
Anthony M.T. Bell ◽  
Francis Clegg ◽  
Christopher M.B. Henderson

Abstract Hydrothermally synthesised K2ZnSi5O12 has a polymerised framework structure with the same topology as leucite (KAlSi2O6, tetragonal I41/a), which has two tetrahedrally coordinated Al3+ cations replaced by Zn2+ and Si4+. At 293 K it has a cation-ordered framework P21/c monoclinic structure with lattice parameters a = 13.1773(2) Å, b = 13.6106(2) Å, c = 13.0248(2) Å and β = 91.6981(9)°. This structure is isostructural with K2MgSi5O12, the first cation-ordered leucite analogue characterised. With increasing temperature, the P21/c structure transforms reversibly to cation-ordered framework orthorhombic Pbca. This transition takes place over the temperature range 848−863 K where both phases coexist; there is an ~1.2% increase in unit cell volume between 843 K (P21/c) and 868 K (Pbca), characteristic of a first-order, displacive, ferroelastic phase transition. Spontaneous strain analysis defines the symmetry- and non-symmetry related changes and shows that the mechanism is weakly first order; the two-phase region is consistent with the mechanism being a strain-related martensitic transition.


2019 ◽  
Vol 16 (04) ◽  
pp. 595-637
Author(s):  
Maren Hantke ◽  
Ferdinand Thein

Liquid–vapor flows with phase transitions have a wide range of applications. Isothermal two-phase flows described by a single set of isothermal Euler equations, where the mass transfer is modeled by a kinetic relation, have been investigated analytically in [M. Hantke, W. Dreyer and G. Warnecke, Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition, Quart. Appl. Math. 71(3) (2013) 509–540]. This work was restricted to liquid water and its vapor modeled by linear equations of state. The focus of this work lies on the generalization of the primary results to arbitrary substances, arbitrary equations of state and thus a more general kinetic relation. We prove existence and uniqueness results for Riemann problems. In particular, nucleation and cavitation are discussed.


Sign in / Sign up

Export Citation Format

Share Document