scholarly journals Homotopy perturbation method for a Stefan problem with variable latent heat

2014 ◽  
Vol 18 (2) ◽  
pp. 391-398 ◽  
Author(s):  
R Rajeev

In this paper, homotopy perturbation method is successfully applied to find an approximate solution of one phase Stefan problem with variable latent heat. The results thus obtained are compared graphically with a published analytical solution and are in good agreement.

2020 ◽  
Vol 9 (1) ◽  
pp. 370-381
Author(s):  
Dinkar Sharma ◽  
Gurpinder Singh Samra ◽  
Prince Singh

AbstractIn this paper, homotopy perturbation sumudu transform method (HPSTM) is proposed to solve fractional attractor one-dimensional Keller-Segel equations. The HPSTM is a combined form of homotopy perturbation method (HPM) and sumudu transform using He’s polynomials. The result shows that the HPSTM is very efficient and simple technique for solving nonlinear partial differential equations. Test examples are considered to illustrate the present scheme.


1970 ◽  
Vol 30 ◽  
pp. 59-75
Author(s):  
M Alhaz Uddin ◽  
M Abdus Sattar

 In this paper, the second order approximate solution of a general second order nonlinear ordinary differential system, modeling damped oscillatory process is considered. The new analytical technique based on the work of He’s homotopy perturbation method is developed to find the periodic solution of a second order ordinary nonlinear differential system with damping effects. Usually the second or higher order approximate solutions are able to give better results than the first order approximate solutions. The results show that the analytical approximate solutions obtained by homotopy perturbation method are uniformly valid on the whole solutions domain and they are suitable not only for strongly nonlinear systems, but also for weakly nonlinear systems. Another advantage of this new analytical technique is that it also works for strongly damped, weakly damped and undamped systems. Figures are provided to show the comparison between the analytical and the numerical solutions. Keywords: Homotopy perturbation method; damped oscillation; nonlinear equation; strong nonlinearity. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 59-75  DOI: http://dx.doi.org/10.3329/ganit.v30i0.8504


2008 ◽  
Vol 63 (1-2) ◽  
pp. 19-23 ◽  
Author(s):  
Mohammad Taghi Darvishi ◽  
Farzad Khani

We propose He’s homotopy perturbation method (HPM) to solve stiff systems of ordinary differential equations. This method is very simple to be implemented. HPM is employed to compute an approximation or analytical solution of the stiff systems of linear and nonlinear ordinary differential equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Abdelouahab Kadem ◽  
Adem Kilicman

Variational iteration method and homotopy perturbation method are used to solve the fractional Fredholm integrodifferential equations with constant coefficients. The obtained results indicate that the method is efficient and also accurate.


2014 ◽  
Vol 62 (3) ◽  
pp. 413-421 ◽  
Author(s):  
E. Hetmaniok ◽  
D. Słota ◽  
T. Trawiński ◽  
R. Wituła

Abstract In this paper an application of the homotopy perturbation method for solving the general linear integral equations of the second kind is discussed. It is shown that under proper assumptions the considered equation possesses a unique solution and the series obtained in the homotopy perturbation method is convergent. The error of approximate solution, received by taking only the partial sum of the series, is also estimated. Moreover, there is presented an example of applying the method for approximate solution of an equation which has a practical application for charge calculation in supply circuit of the flash lamps used in cameras.


Sign in / Sign up

Export Citation Format

Share Document