scholarly journals Thermosolutal instability in a horizontal fluid layer affected by rotation

2019 ◽  
Vol 23 (2 Part B) ◽  
pp. 1139-1149
Author(s):  
Abdullah Abdullah ◽  
Sultana Al-Ahmari ◽  
Ali Chamkha
2002 ◽  
Author(s):  
Dae Jun Yang ◽  
Jake Kim ◽  
Chang Kyun Choi ◽  
In Gook Hwang

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
A. V. Kuznetsov ◽  
D. A. Nield

In this paper, we investigated the onset of natural convection in a horizontal fluid layer due to nonuniform internal heat generation, which is relevant to a number of geophysical situations. We investigated a number of special cases, which we believe are paradigmatic. Those include linear, quadratic, concentrated, and exponential source strength distributions. Our results show that those situations that lead to a reduction/increase in the size of the region in which the basic temperature gradient is destabilizing lead to an increase/decrease in stability.


1995 ◽  
Vol 117 (2) ◽  
pp. 329-333 ◽  
Author(s):  
J. Tang ◽  
H. H. Bau

Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Be´nard problem of an infinite fluid layer heated from below with Joule heating and cooled from above can be significantly increased through the use of feedback control strategies effecting small perturbations in the boundary data. The bottom of the layer is heated by a network of heaters whose power supply is modulated in proportion to the deviations of the temperatures at various locations in the fluid from the conductive, no-motion temperatures. Similar control strategies can also be used to induce complicated, time-dependent flows at relatively low Rayleigh numbers.


Sign in / Sign up

Export Citation Format

Share Document