scholarly journals Motion equations and non-Noether symmetries of Lagrangian systems with conformable fractional derivative

2021 ◽  
pp. 35-35
Author(s):  
Jing-Li Fu ◽  
Lijun Zhang ◽  
Chaudry Khalique ◽  
Ma-Li Guo

In this paper, we present the fractional motion equations and fractional non-Noether symmetries of Lagrangian systems with the conformable fractional derivatives. The exchanging relationship between isochronous variation and fractional derivative, and the fractional Hamilton's principle of the holonomic conservative and non-conservative systems under the conformable fractional derivative are proposed. Then the fractional motion equations of these systems based on the Hamilton's principle are established. The fractional Euler operator, the definition of fractional non-Noether symmetries, non-Noether theorem and Hojman's conserved quantities for the Lagrangian systems are obtained with conformable fractional derivative. An example is given to illustrate the results.

2018 ◽  
Vol 3 (2) ◽  
pp. 513-526
Author(s):  
Sheng-nan Gong ◽  
Jing-li Fu

AbstractThis paper propose Noether symmetries and the conserved quantities of the relative motion systems on time scales. The Lagrange equations with delta derivatives on time scales are presented for the system. Based upon the invariance of Hamilton action on time scales, under the infinitesimal transformations with respect to the time and generalized coordinates, the Hamilton’s principle, the Noether theorems and conservation quantities are given for the systems on time scales. Lastly, an example is given to show the application the conclusion.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ahmed Kajouni ◽  
Ahmed Chafiki ◽  
Khalid Hilal ◽  
Mohamed Oukessou

This paper is motivated by some papers treating the fractional derivatives. We introduce a new definition of fractional derivative which obeys classical properties including linearity, product rule, quotient rule, power rule, chain rule, Rolle’s theorem, and the mean value theorem. The definition D α f t = lim h ⟶ 0 f t + h e α − 1 t − f t / h , for all t > 0 , and α ∈ 0,1 . If α = 0 , this definition coincides to the classical definition of the first order of the function f .


2020 ◽  
Vol 6 (2) ◽  
pp. 210-217
Author(s):  
Radouane Azennar ◽  
Driss Mentagui

AbstractIn this paper, we prove that the intermediate value theorem remains true for the conformable fractional derivative and we prove some useful results using the definition of conformable fractional derivative given in R. Khalil, M. Al Horani, A. Yousef, M. Sababhehb [4].


Robotica ◽  
1995 ◽  
Vol 13 (2) ◽  
pp. 209-213
Author(s):  
Guy Jumarie

SummaryIn the tracking control of manipulators via the sliding scheme, it may happen that sometimes, because of various inaccuracies, the definition of the actual sliding surface involves errors terms which may be either deterministic or, on the contrary, stochastic. This paper considers this last case and shows how one can estimate the new performances of the system so disturbed. A stochastic Hamilton's principle is applied, by combining the Lagrange parameter technique with results of the dynamic programming approach.


2007 ◽  
Vol 18 (03) ◽  
pp. 281-299 ◽  
Author(s):  
VASILY E. TARASOV

Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of selfadjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.


2021 ◽  
Vol 26 (4) ◽  
pp. 66
Author(s):  
Dominic Clemence-Mkhope ◽  
Belinda Clemence-Mkhope

A method recently advanced as the conformable Euler method (CEM) for the finite difference discretization of fractional initial value problem Dtαyt = ft;yt, yt0 = y0, a≤t≤b, and used to describe hyperchaos in a financial market model, is shown to be valid only for α=1. The property of the conformable fractional derivative (CFD) used to show this limitation of the method is used, together with the integer definition of the derivative, to derive a modified conformable Euler method for the initial value problem considered. A method of constructing generalized derivatives from the solution of the non-integer relaxation equation is used to motivate an alternate definition of the CFD and justify alternative generalizations of the Euler method to the CFD. The conformable relaxation equation is used in numerical experiments to assess the performance of the CEM in comparison to that of the alternative methods.


Author(s):  
Manuel Duarte Ortigueira ◽  
Arnaldo Guimara˜es Batista

A reinterpretation of the classic definition of fractional Brownian motion leads to a new definition involving a fractional noise obtained as a fractional derivative of white noise. To obtain this fractional noise, two sets of fractional derivatives are considered: a) the forward and backward and b) the central derivatives. For these derivatives the autocorrelation functions of the corresponding fractional noises have the same representations. The obtained results are used to define and propose a new simulation procedure.


2009 ◽  
Vol 16 (4) ◽  
pp. 365-387 ◽  
Author(s):  
Yuriy A. Rossikhin ◽  
Marina V. Shitikova

The dynamic behavior of linear and nonlinear mechanical oscillators with constitutive equations involving fractional derivatives defined as a fractional power of the operator of conventional time-derivative is considered. Such a definition of the fractional derivative enables one to analyse approximately vibratory regimes of the oscillator without considering the drift of its position of equilibrium. The assumption of small fractional derivative terms allows one to use the method of multiple time scales whereby a comparative analysis of the solutions obtained for different orders of low-level fractional derivatives and nonlinear elastic terms is possible to be carried out. The interrelationship of the fractional parameter (order of the fractional operator) and nonlinearity manifests itself in full measure when orders of the small fractional derivative term and of the cubic nonlinearity entering in the oscillator's constitutive equation coincide.


Sign in / Sign up

Export Citation Format

Share Document