scholarly journals A New Conformable Fractional Derivative and Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ahmed Kajouni ◽  
Ahmed Chafiki ◽  
Khalid Hilal ◽  
Mohamed Oukessou

This paper is motivated by some papers treating the fractional derivatives. We introduce a new definition of fractional derivative which obeys classical properties including linearity, product rule, quotient rule, power rule, chain rule, Rolle’s theorem, and the mean value theorem. The definition D α f t = lim h ⟶ 0 f t + h e α − 1 t − f t / h , for all t > 0 , and α ∈ 0,1 . If α = 0 , this definition coincides to the classical definition of the first order of the function f .

2014 ◽  
Vol 614 ◽  
pp. 401-404
Author(s):  
Cui Lian You ◽  
Huae Huo

When calculating Liu integral, it is difficult to use the definition of Liu integral directly. As we know, the mean value theorem of integral is an important tool to calculate Riemann integral, inspired by this, the mean value theorem of a new kind of fuzzy integral was obtained in this paper.


Author(s):  
Kai Diethelm

AbstractWe generalize the classical mean value theorem of differential calculus by allowing the use of a Caputo-type fractional derivative instead of the commonly used first-order derivative. Similarly, we generalize the classical mean value theorem for integrals by allowing the corresponding fractional integral, viz. the Riemann-Liouville operator, instead of a classical (firstorder) integral. As an application of the former result we then prove a uniqueness theorem for initial value problems involving Caputo-type fractional differential operators. This theorem generalizes the classical Nagumo theorem for first-order differential equations.


2021 ◽  
pp. 35-35
Author(s):  
Jing-Li Fu ◽  
Lijun Zhang ◽  
Chaudry Khalique ◽  
Ma-Li Guo

In this paper, we present the fractional motion equations and fractional non-Noether symmetries of Lagrangian systems with the conformable fractional derivatives. The exchanging relationship between isochronous variation and fractional derivative, and the fractional Hamilton's principle of the holonomic conservative and non-conservative systems under the conformable fractional derivative are proposed. Then the fractional motion equations of these systems based on the Hamilton's principle are established. The fractional Euler operator, the definition of fractional non-Noether symmetries, non-Noether theorem and Hojman's conserved quantities for the Lagrangian systems are obtained with conformable fractional derivative. An example is given to illustrate the results.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1303
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

Monotonicity analysis of delta fractional sums and differences of order υ∈(0,1] on the time scale hZ are presented in this study. For this analysis, two models of discrete fractional calculus, Riemann–Liouville and Caputo, are considered. There is a relationship between the delta Riemann–Liouville fractional h-difference and delta Caputo fractional h-differences, which we find in this study. Therefore, after we solve one, we can apply the same method to the other one due to their correlation. We show that y(z) is υ-increasing on Ma+υh,h, where the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and then, we can show that y(z) is υ-increasing on Ma+υh,h, where the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) for each z∈Ma+h,h. Conversely, if y(a+υh) is greater or equal to zero and y(z) is increasing on Ma+υh,h, we show that the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and consequently, we can show that the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) on Ma,h. Furthermore, we consider some related results for strictly increasing, decreasing, and strictly decreasing cases. Finally, the fractional forward difference initial value problems and their solutions are investigated to test the mean value theorem on the time scale hZ utilizing the monotonicity results.


Author(s):  
Zhang Wenpeng

The main purpose of this paper is using the mean value theorem of DirichletL-functions to study the asymptotic property of a sum analogous to Dedekind sum, and give an interesting mean square value formula.


2007 ◽  
Vol 81 (3-4) ◽  
pp. 365-372
Author(s):  
S. N. Oshchepkova ◽  
O. M. Penkin

Sign in / Sign up

Export Citation Format

Share Document