scholarly journals Optimization and control of fuel cell thermal management system based on neural network

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2933-2939
Author(s):  
Kunhao Tang ◽  
Sanhua Zhang ◽  
Youlong Wu

Aiming at the direct methanol fuel cell system is too complicated, difficult to model, and the thermal management system needs to be optimized. The article attempts to bypass the internal complexity of direct methanol fuel cell, based on experimental data, use neural networks to approximate arbitrarily complex non-linear functions ability to apply neural network identification methods to direct methanol fuel cell, a highly non-linear thermal management system optimization modelling. The paper uses 1000 sets of battery voltage and current density experimental data as training samples and uses an improved back propagation neural network to establish a battery voltage-current density dynamic response model at different temperatures. The simulation results show that this method is feasible, and the established model has high accuracy. It makes it possible to design the real-time controller of the direct methanol fuel cell and optimize the thermal energy manage?ment system?s efficiency.

Author(s):  
M. A. Rafe Biswas ◽  
Melvin D. Robinson

A direct methanol fuel cell can convert chemical energy in the form of a liquid fuel into electrical energy to power devices, while simultaneously operating at low temperatures and producing virtually no greenhouse gases. Since the direct methanol fuel cell performance characteristics are inherently nonlinear and complex, it can be postulated that artificial neural networks represent a marked improvement in performance prediction capabilities. Artificial neural networks have long been used as a tool in predictive modeling. In this work, an artificial neural network is employed to predict the performance of a direct methanol fuel cell under various operating conditions. This work on the experimental analysis of a uniquely designed fuel cell and the computational modeling of a unique algorithm has not been found in prior literature outside of the authors and their affiliations. The fuel cell input variables for the performance analysis consist not only of the methanol concentration, fuel cell temperature, and current density, but also the number of cells and anode flow rate. The addition of the two typically unconventional variables allows for a more distinctive model when compared to prior neural network models. The key performance indicator of our neural network model is the cell voltage, which is an average voltage across the stack and ranges from 0 to 0:8V. Experimental studies were carried out using DMFC stacks custom-fabricated, with a membrane electrode assembly consisting of an additional unique liquid barrier layer to minimize water loss through the cathode side to the atmosphere. To determine the best fit of the model to the experimental cell voltage data, the model is trained using two different second order training algorithms: OWO-Newton and Levenberg-Marquardt (LM). The OWO-Newton algorithm has a topology that is slightly different from the topology of the LM algorithm by the employment of bypass weights. It can be concluded that the application of artificial neural networks can rapidly construct a predictive model of the cell voltage for a wide range of operating conditions with an accuracy of 10−3 to 10−4. The results were comparable with existing literature. The added dimensionality of the number of cells provided insight into scalability where the coefficient of the determination of the results for the two multi-cell stacks using LM algorithm were up to 0:9998. The model was also evaluated with empirical data of a single-cell stack.


2011 ◽  
Vol 403-408 ◽  
pp. 4030-4035
Author(s):  
Ling Zhi Cao ◽  
Zhi Li Su ◽  
Chun Wen Li

It is necessary to built an accurate model of direct methanol fuel cell (DMFC) as a complex nonlinear multi-input multi-output system .In this paper .the methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell was modeled by neural network model. This model is based on Matlab / Simulink software .The simulation shows that the neural network model has better accuracy than the physical model, while analyzing the performance of the DMFC in different temperatures and concentrations.


2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Mehdi Tafazoli ◽  
Hamid Baseri ◽  
Ebrahim Alizadeh ◽  
Mohsen Shakeri

The performance of a direct methanol fuel cell (DMFC) has complex nonlinear characteristics. In this paper, the performance of a DMFC has been modeled using a neural network approach. The input parameters of the DMFC model include cell geometrical and operational parameters such as the cell temperature, oxygen flow rate, channel depth of the bipolar plate, methanol concentration, cathode back pressure, and current density and the output parameter is the cell voltage. In order to predict the performance of a DMFC single cell, two types of artificial neural network (ANN) have been developed to correlate the input parameters of the DMFC to the cell voltage. The performance of the networks was investigated by varying the number of neurons, number of layers, and transfer function of the ANNs and the best one is selected based on the mean square error. The results indicated that the neural network models can predict the cell voltage with an acceptable accuracy.


2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2975-2982
Author(s):  
Qianqian Ge ◽  
Cuncun Wei

Two thermal management control strategies, namely flow following current and power mode and back propagation neural network auto-disturbance rejection method, were proposed to solve significant temperature fluctuation problems, long regulation time, and slow response speed in fuel cell thermal management system variable load. The results show that the flow following current and power control strategy can effectively weaken the coupling effect between pump and radiator fan and significantly reduce the overshoot and adjustment time of inlet and outlet cooling water temperature and temperature difference reactor. Although the control effect of the neural network and strategy is insufficient under maximum power, the overall control effect is better than that of the flow following the current control strategy.


2011 ◽  
Author(s):  
Timothy Hall ◽  
Corey Grice ◽  
Bogdan Gurau ◽  
Paul McGinn

Sign in / Sign up

Export Citation Format

Share Document