Performance Estimation of Direct Methanol Fuel Cell Using Artificial Neural Network

Author(s):  
M. A. Rafe Biswas ◽  
Melvin D. Robinson

A direct methanol fuel cell can convert chemical energy in the form of a liquid fuel into electrical energy to power devices, while simultaneously operating at low temperatures and producing virtually no greenhouse gases. Since the direct methanol fuel cell performance characteristics are inherently nonlinear and complex, it can be postulated that artificial neural networks represent a marked improvement in performance prediction capabilities. Artificial neural networks have long been used as a tool in predictive modeling. In this work, an artificial neural network is employed to predict the performance of a direct methanol fuel cell under various operating conditions. This work on the experimental analysis of a uniquely designed fuel cell and the computational modeling of a unique algorithm has not been found in prior literature outside of the authors and their affiliations. The fuel cell input variables for the performance analysis consist not only of the methanol concentration, fuel cell temperature, and current density, but also the number of cells and anode flow rate. The addition of the two typically unconventional variables allows for a more distinctive model when compared to prior neural network models. The key performance indicator of our neural network model is the cell voltage, which is an average voltage across the stack and ranges from 0 to 0:8V. Experimental studies were carried out using DMFC stacks custom-fabricated, with a membrane electrode assembly consisting of an additional unique liquid barrier layer to minimize water loss through the cathode side to the atmosphere. To determine the best fit of the model to the experimental cell voltage data, the model is trained using two different second order training algorithms: OWO-Newton and Levenberg-Marquardt (LM). The OWO-Newton algorithm has a topology that is slightly different from the topology of the LM algorithm by the employment of bypass weights. It can be concluded that the application of artificial neural networks can rapidly construct a predictive model of the cell voltage for a wide range of operating conditions with an accuracy of 10−3 to 10−4. The results were comparable with existing literature. The added dimensionality of the number of cells provided insight into scalability where the coefficient of the determination of the results for the two multi-cell stacks using LM algorithm were up to 0:9998. The model was also evaluated with empirical data of a single-cell stack.

2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Mehdi Tafazoli ◽  
Hamid Baseri ◽  
Ebrahim Alizadeh ◽  
Mohsen Shakeri

The performance of a direct methanol fuel cell (DMFC) has complex nonlinear characteristics. In this paper, the performance of a DMFC has been modeled using a neural network approach. The input parameters of the DMFC model include cell geometrical and operational parameters such as the cell temperature, oxygen flow rate, channel depth of the bipolar plate, methanol concentration, cathode back pressure, and current density and the output parameter is the cell voltage. In order to predict the performance of a DMFC single cell, two types of artificial neural network (ANN) have been developed to correlate the input parameters of the DMFC to the cell voltage. The performance of the networks was investigated by varying the number of neurons, number of layers, and transfer function of the ANNs and the best one is selected based on the mean square error. The results indicated that the neural network models can predict the cell voltage with an acceptable accuracy.


Author(s):  
M. A. Rafe Biswas ◽  
Melvin D. Robinson

A direct methanol fuel cell (DMFC) converts liquid fuel into electricity to power devices, while operating at relatively low temperatures and producing virtually no greenhouse gases. Since DMFC performance characteristics are inherently complex, it can be postulated that artificial neural networks (NN) represent a marked improvement in prediction capabilities. In this work, an artificial NN is employed to predict the performance of a DMFC under various operating conditions. Input variables for the analysis consist of methanol concentration, temperature, current density, number of cells, and anode flow rate. The addition of the two latter variables allows for a more distinctive model when compared to prior NN models. The key performance indicator of our NN model is cell voltage, which is an average voltage across the stack and ranges from 0 to 0.8 V. Experimental studies were conducted using DMFC stacks with membrane electrode assemblies consisting of an additional unique liquid barrier layer to minimize water loss to atmosphere. To determine the best fit to the experimental data, the model is trained using two second-order training algorithms: OWO-Newton and Levenberg–Marquardt (LM). The topology of OWO-Newton algorithm is slightly different from that of LM algorithm by employing bypass weights. The application of NN shows rapid construction of a predictive model of cell voltage for varying operating conditions with an accuracy on the order of 10−4, which can be comparable to literature. The coefficient of determination of the optimal model results using either algorithm were greater than 0.998.


2011 ◽  
Vol 403-408 ◽  
pp. 4030-4035
Author(s):  
Ling Zhi Cao ◽  
Zhi Li Su ◽  
Chun Wen Li

It is necessary to built an accurate model of direct methanol fuel cell (DMFC) as a complex nonlinear multi-input multi-output system .In this paper .the methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell was modeled by neural network model. This model is based on Matlab / Simulink software .The simulation shows that the neural network model has better accuracy than the physical model, while analyzing the performance of the DMFC in different temperatures and concentrations.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
David Ouellette ◽  
Cynthia Ann Cruickshank ◽  
Edgar Matida

The performance of a new methanol fuel cell that utilizes a liquid formic acid electrolyte, named the formic acid electrolyte-direct methanol fuel cell (FAE-DMFC) is experimentally investigated. This fuel cell type has the capability of recycling/washing away methanol, without the need of methanol-electrolyte separation. Three fuel cell configurations were examined: a flowing electrolyte and two circulating electrolyte configurations. From these three configurations, the flowing electrolyte and the circulating electrolyte, with the electrolyte outlet routed to the anode inlet, provided the most stable power output, where minimal decay in performance and less than 3% and 5.6% variation in power output were observed in the respective configurations. The flowing electrolyte configuration also yielded the greatest power output by as much as 34%. Furthermore, for the flowing electrolyte configuration, several key operating conditions were experimentally tested to determine the optimal operating points. It was found that an inlet concentration of 2.2 M methanol and 6.5 M formic acid, as along with a cell temperature of 52.8 °C provided the best performance. Since this fuel cell has a low optimal operating temperature, this fuel cell has potential applications for handheld portable devices.


2012 ◽  
Vol 23 (07) ◽  
pp. 1250055 ◽  
Author(s):  
J. L. TANG ◽  
C. Z. CAI ◽  
T. T. XIAO ◽  
S. J. HUANG

The purpose of this paper is to establish a direct methanol fuel cell (DMFC) prediction model by using the support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter selection. Two variables, cell temperature and cell current density were employed as input variables, cell voltage value of DMFC acted as output variable. Using leave-one-out cross-validation (LOOCV) test on 21 samples, the maximum absolute percentage error (APE) yields 5.66%, the mean absolute percentage error (MAPE) is only 0.93% and the correlation coefficient (R2) as high as 0.995. Compared with the result of artificial neural network (ANN) approach, it is shown that the modeling ability of SVR surpasses that of ANN. These suggest that SVR prediction model can be a good predictor to estimate the cell voltage for DMFC system.


Author(s):  
Nastaran Shakeri ◽  
Zahra Rahmani ◽  
Abolfazl Ranjbar Noei ◽  
Mohammadreza Zamani

Direct methanol fuel cells are one of the most promisingly critical fuel cell technologies for portable applications. Due to the strong dependency between actual operating conditions and electrical power, acquiring an explicit model becomes difficult. In this article, the behavioral model of direct methanol fuel cell is proposed with satisfactory accuracy, using only input/output measurement data. First, using the generated data which are tested on the direct methanol fuel cell, the frequency response of the direct methanol fuel cell is estimated as a primary model in lower accuracy. Then, the norm optimal iterative learning control is used to improve the estimated model of the direct methanol fuel cell with a predictive trial information algorithm. Iterative learning control can be used for controlling systems with imprecise models as it is capable of correcting the input control signal in each trial. The proposed algorithm uses not only the past trial information but also the future trials which are predicted. It is found that better performance, as well as much more convergence speed, can be achieved with the predicted future trials. In addition, applying the norm optimal iterative learning control on the proposed procedure, resulted from the solution of a quadratic optimization problem, leads to the optimal selection of the control inputs. Simulation results demonstrate the effectiveness of the proposed approach by practical data.


2011 ◽  
Vol 347-353 ◽  
pp. 3275-3280 ◽  
Author(s):  
Xian Qi Cao ◽  
Ji Tian Han ◽  
Ze Ting Yu ◽  
Pei Pei Chen

In this work, the effect of the current-collector structure on the performance of a passive direct methanol fuel cell (DMFC) was investigated. Parallel current-collector (PACC) and other two kinds of perforated current collectors (PECC) were designed, fabricated and tested. The studies were conducted in a passive DMFC with active membrane area of 9 cm2, working at ambient temperature and pressure. Two kinds of methanol solution of 2 M and 4 M were used. Results showed that the PACC as anode current-collector has a positive effect on cell voltage and power. For the cathode current-collector structure, the methanol concentration of 2 M for PECC-2 (higher open ratio 50.27 %) increased performance of DMFC. But the methanol concentration of 4 M led to an enhancement of fuel cell performance that used PACC or PECC-2 as cathode current-collector.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mojtaba Tafaoli-Masoule ◽  
Arian Bahrami ◽  
Danial Mohammadrezaei

It is well known that anode and cathode pressures and cell temperature are the effective parameters in performance of Direct Methanol Fuel Cell (DMFC). In the present study, the genetic algorithm as one of the most powerful optimization tools is applied to determine operating conditions which result in the maximum power density of a DMFC. A quasi-two-dimensional, isothermal model is presented to determine maximum power of a DMFC. For validation of this model, the results of the model are compared to experimental results and shown to be in good agreement with them.


Sign in / Sign up

Export Citation Format

Share Document